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1 Introduction

Counterfactual thought and talk play a central role throughout science and in many areas of
philosophy. Hence it’s not surprising that they have been extensively studied in a number fields:
besides philosophy itself, linguistics, psychology, and computer science. In particular, much
work has gone into developing a logic and a semantics for counterfactual conditionals, i.e. con-
ditionals of the form:

(1) If Mary pulled the trigger, her gun would fire.

is paper investigates what happens when we merge two different lines of theorizing about
counterfactuals, with particular attention to the goal of giving a compositional semantics. One
of these views is the comparative closeness view, which was initially developed by Stalnaker
(1968) and Lewis (1973a, 1973b) in the framework of possible worlds semantics. e second is
the interventionist view, which is part of the causal models framework developed by computer
scientists, in particular Judea Pearl (2000). Common lore (and existing literature) have it that
the two views can be easily fit together, aside perhaps from a few details. I argue that, on the
contrary, transplanting causal-models-inspired ideas in a possible worlds framework yields a
substantially new semantics, which makes systematically different predictions and generates a
new logic. e difference is ultimately grounded in different algorithms for handling inconsis-
tent information. Hence it touches on issues that are at the very heart of a semantics for condi-
tionals that involve contrary-to-fact suppositions. e upshot is that we have a new semantics
to study, and a substantial choice to make.

e bulk of this paper is devoted to explaining in detail the new view, but it’s helpful to
give a rough sketch here. Start from classical possible worlds semantics for counterfactuals.
Under one popular implementation (so-called premise semantics), here is how the evaluation
of a counterfactual works. We hold fixed a set S of true propositions, which work as covert
premises, and we check whether those propositions, together with the antecedent, entail the
consequent. Schematically:

⌜p� q⌝ is true iff p, together with propositions in set S, entail q

enew semantics adds an extra step. Rather than using a fixed stock of propositions, we use the
antecedent to selectively eliminate some of those propositions from the set. I say that, when this

1



happens, the set S is filtered for the antecedent. Accordingly, I call the new semantics filtering
semantics. Here are the new schematic truth conditions:

⌜p� q⌝ is true iff p, together with propositions in set S filtered for p, entail q

One alternative version of possible worlds semantics exploits, rather than covert premises, a
relation of comparative closeness between worlds. Within this framework, filtering amounts to
an antecedent-driven shi in what worlds count as closer by or further away—something that
is not contemplated by any standard counterfactual semantics.

Recently, some interesting work has gone into understanding the relationship between the
causal models framework and comparative closeness semantics: for example, Schulz 2011 and
Kaufmann 2013. e theory I present here is both related and indebted to these accounts, but
departs more radically from classical theories. Existing accounts preserve the basic features of
classical semantics, including its logic. I argue that, on the contrary, the causal models frame-
work involves a different conception of counterfactual supposition; adopting this conception
requires substantial changes to the semantics, as well as a change of logic. is claim is backed
by a recent technical result in Halpern 2013. While I have only learned of Halpern’s result af-
ter completing the bulk of the present research, this paper can be seen as an exploration of the
consequences of his result for the semantics of natural language. ¹

is paper focuses on the positive task of constructing a causal models-based semantics
and explaining how it differs from classical counterfactual semantics. Settling which of the two
theories is empirically correct goes beyond my purposes—indeed, this doesn’t seem the kind
of question that can be settled in the space of a single paper. But I can start bringing up some
evidence that can decide between the two views. On a preliminary survey, this evidence seems to
support filtering semantics against the classical account. is is obviously not enough to justify
a paradigm shi, but it shows that filtering semantics deserves more in-depth investigation,
and that causal-models-style reasoning should be taken seriously not only by philosophers of
science, but also by philosophers of language, semanticists, and logicians.

I quickly review standard semantics for counterfactuals in section 2 and introduce the causal
models framework in section 3. I give a premise semantics that implements causal-models-style
reasoning in sections 4 and 5, and I show how the new semantics diverges in predictions from
classical premise semantics in section 6.

2 Premise semantics for counterfactuals

2.1 Ordering semantics

Virtually all contemporary accounts of counterfactuals in the possible worlds tradition start
from a simple idea, which is pithily put by Stalnaker:

¹I should note that at least another philosopher has claimed that, when properly developed, the Pearl frame-
work forces us to depart from standard counterfactual logics: see Briggs 2012. (Briggs, though, seems to suggest
that a semantics that yields the new logic should depart entirely from semantics in the possible worlds tradition.)
Unfortunately, for reasons of space I can’t discuss her specific claims in this paper.
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Consider a possible world in which A is true, and which otherwise differs min-
imally from the actual world. “If A, then B” is true (false) just in case B is true
(false) in that possible world. (Stalnaker 1968)

e challenge is explicating rigorously what “differing minimally” amounts to. Accounts in the
tradition of Stalnaker andLewis (1973a, 1973b) do so by appealing to an ordering onworlds. e
key formal tool is a relation of comparative closeness, represented as ‘⪯w’. ⪯w compares worlds
with respect to their closeness to a benchmark world w: ⌜w′ ⪯w w′′⌝ says that w′ is closer to w
than w′′ is. e exact way in which⪯w figures in the truth conditions for counterfactuals varies
across specific versions of the semantics. Here is a version that is oen used, and that strikes a
middle ground between Stalnaker and Lewis’s own accounts:

⌜If ϕ, would ψ⌝ is true at w just in case all ϕ-worlds that are closest according to
⪯w are ψ-worlds

(Roughly, a world w′ counts as a closest world to w just in case there is no world that is closer to
w than w′ is, according to ⪯w.) ese truth conditions rely on the so-called limit assumption,
i.e. the assumption that, for any antecedent, there is a ⪯w-maximal set of antecedent worlds.
e limit assumption is controversial, but it makes no difference to my arguments and greatly
simplifies my exposition, so I’ll make it throughout the paper.

2.2 Modal premise semantics

For the purposes of this paper, I take asmy benchmark theory not ordering semantics, but rather
a premise semantics for counterfactuals derived from the work of Kratzer (1981a, 1981b, 1986,
1991).² I have two main reasons. On the one hand, Kratzer’s semantics has become something
of a standard in the literature on modality. On the other, premise semantics lends itself well to
implementing the new account. But let me remind you that, as Lewis showed (1981), ordering
semantics and premise semantics are provably equivalent. Hence nothing substantial hangs on
the choice.³

For Kratzer, modalized claims in natural language state the existence of a relation between
the proposition expressed by the embedded clause (the prejacent) and a certain body of infor-
mation. Consider (2):

(2) David must be the murderer.

On a first pass, (2) states that the proposition that David is the murderer is entailed by a body of
information, which Kratzer thinks of as a set of covert premises. All of Kratzer’s semantics for
modality results from refining this basic idea.

Kratzer postulates the presence of two contextual parameters which jointly determinewhich
propositions are used as premises: the modal base and the ordering source. Both are functions

²While it is standard to use Kratzer’s framework nowadays, it should be pointed out that Kratzer’s is not the only
or even the first premise semantics framework to appear, either in philosophy or formal semantics. For an earlier
versions of premise semantics, see Veltman 1976. e basic idea behind premise semantics can be traced back to
pre-Lewisian accounts of counterfactuals, like Chisholm 1946 and Goodman 1947.

³More precisely, a subtype of ordering semantics is provably equivalent to premise semantics—namely, the subtype
that employs partial orderings. As Lewis points out (1981), though, there are plausible ways to interpret ordering
semantics with total orderings that can be mapped to premise semantics.
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from worlds to sets of propositions, though for simplicity I will oen treat them just as sets of
propositions. Modal base and ordering source play distinct theoretical roles. emodal base in-
cludes propositions that are, in some relevant sense, settled in the context. e ordering source
includes propositions that are used to generate a ranking of worlds along some appropriate di-
mension. e precise way in which these notions are understood depends on the flavor of the
modal. For example, for the case of epistemic modals, the modal base includes propositions
that are known by some relevant agent, while the propositions in the ordering source involve
information about what is stereotypical in the context.

While the propositions in the modal base are assumed to be always consistent, this is not
so for the propositions in the ordering source. It might be that a number of propositions can
be legitimately used to rank worlds along some dimension, but that no single world can satisfy
them all. is introduces a problem for the first pass semantics I sketched above. If our premise
semanticsmerely checkedwhether the premise set entails the prejacent, we would get disastrous
results: all necessity claims like (2) would come out trivially false.

Kratzer’s fix is quite natural: rather than looking at the logical relations between the pre-
jacent and an inconsistent premise set, we consider all the biggest consistent fragments of the
premise set. On this new semantics, a necessity claim like (2) states that all the biggest consis-
tent fragments of the premise set entail the prejacent.

is can be formalized as follows. Say that:

A set of propositions S is a maximal consistent superset of S′ relative to S′′ iff

(a) S is a superset of S′,

(b) S is consistent,

(c) S is formed from S′ by adding zero or more propositions from S′′, and

(d) if any more propositions from S′′ were added to S, S would be inconsistent.⁴

e schematic truth conditions of a modal necessity claim are:⁵

(3) Jmust ϕKw, f ,g = 1 iff, for every maximal consistent superset S of f (w) with respect to
g(w), S ⊨ JϕKw, f ,g

Kratzer’s technique for handling inconsistent premise sets is just the main feature of Kratzer’s
apparatus that filtering semantics will call into question.

2.3 Modal premise semantics: counterfactuals

For Kratzer, all conditional statements are modal statements of sort. e if -clause is used, in
addition to themodal base, to restrict the domain of quantification of the relevantmodal. is is
implemented simply by adding the proposition expressed by the antecedent to the modal base.
Schematically, these are the resulting truth conditions:

⁴Formally: (a) S ⊇ S′ ; (b)
∩

S ̸= ∅; (c) (S − S′) ⊆ S′′ ; (d)¬∃p ∈ S′′ : p /∈ S ∧∩
(S ∪ {p}) ̸= ∅.

⁵Here, and throughout the rest of the paper, I assume an intentional system, in which interpretation is relativized
to a world parameter, as well to a modal base and ordering source parameter. is is just for simplicity; nothing
hangs on this assumption.
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(4) JIf ϕ, would ψKw, f ,g = 1 iff, for all maximal consistent supersets S of f (w) ∪ {ϕ} with
respect to g(w), S ⊨ JψKw, f ,g

From here, all we need to get an account of counterfactuals is a specification of amodal base and
an ordering source that pertain to counterfactual modality. Kratzer’s proposal is this: the modal
base starts out empty, while the ordering source maps each world to a set of propositions that
are true at that world. (It is a difficult and controversial issuewhich true propositions are picked,
but set that aside for a moment.) Hence, in Kratzer’s apparatus, the ordering source plays the
role of orderings in ordering semantics.

Notice that this semantics, as I’ve stated it, incorporates a version of the limit assumption.
In present terms, the assumption is that, no matter how we extend the modal base by adding
propositions from the ordering source, we always hit on a maximal consistent superset, i.e. one
that cannot be further extended without falling into inconsistency.

2.4 Causal dependencies and premise semantics

I closemy overview by rehearsing a well-known line of argument to the effect that causal depen-
dence play an important role in the semantics of counterfactuals. To be sure, everything that I
say in this section is compatible with standard premise semantics. e upshot of the argument is
that the premise sets we use to evaluate counterfactuals must encode information about causal
dependence. is is fully compatible with the mechanics that I described in sections 2.1–2.3
staying untouched. In premise semantics, questions about the structural and logical properties
of modals are orthogonal to questions pertaining to the choice of premise sets. Nevertheless,
reviewing the argument helps motivate the shi of attention to causal notions.

To start, consider the following scenario:

Coin toss. Alice is about to toss a coin and offers Bob a bet on heads; Bob declines.
Alice tosses the coin, which does indeed land heads.

And now consider the following counterfactual, as evaluated in the above scenario:

(5) If Bob had taken the bet, he would have won.

(5) is judged to be true. Now, notice what kind of information we need to hold fixed to vindicate
this judgment. e moment at which Bob takes or rejects the bet precedes the moment of the
coin toss. Moreover, coin tosses are indeterministic events. Hence, when Bob takes or rejects
the bet, it is indeterminate whether he will win or lose. (If you’re doubtful that coin tosses are
genuinely indeterministic, just tweak the example.) Hence, if we held fixed only the events in
history that preceded Bob’s decision, and the proposition that he accepted the bet, it wouldn’t
be settled that he would win. It might still be that the coin lands tails and he loses. By contrast,
we do get the right prediction if we decide to hold fixed all facts that are causally independent of
Bob’s taking the bet. e actual outcome of the coin toss is independent of Bob’s taking the bet.
Hence we can hold it fixed and use it to generate the conclusion that Bob would have won.

Cases like (5) have been in the literature since Slote 1978 (who credits SydneyMorgenbesser
for first introducing them). ey point to the idea that natural language counterfactuals track
relationships of causal dependence and independence, suggesting that this information should
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be incorporated into premise sets and orderings. In fact, just examples of this kind have been
used to construct a battery of counterexamples to Lewis’s stated criterion for orderings.⁶,⁷

Before proceeding, a caveat. I have stated the argument in terms of causal dependencies,
and I will continue to focus on dependencies of a causal nature throughout the paper. But many
run-of-the-mill counterfactuals track noncausal connections. For example:⁸

(7) If I had arrived at 2:05, I would have been five minutes late.

My arriving at 2:05 when I have a 2 pm appointment determines that I am late, but is not cause
of my being late. An adequate premise set for evaluating (7) should involve information about
this kind of noncausal dependence. As I hint in section 7, it’s plausible that the formalism I
develop here may be generalized beyond causation, though I won’t pursue this generalization
directly in this paper.⁹

⁶Roughly stated, Lewis’s (1979) criteria for similarity are: (1) avoidance of major violations of actual laws; (2)
maximization of spatio-temporal regions in which there is perfect overlap of particular facts with the actual world;
(3) avoidance of minor violations of actual laws; (4) vindication of approximate similarity of particular facts with
the actual world. Lewis’s account is equipped to deal with the case I present in the main text (via clause (4) of the
account), but there are very similar cases that are problematic. Here is one that mixes the coin toss with Lewis’s own
famous Nixon example in (1973a), due to Hiddleston 2005:

Chancy nuclear war. Alice is about to toss a coin and offers to Bob to bet. Unbeknownst to them,
Nixon is watching them play. He has decided that he’ll push the button to launch a nuclear attack just
in case Bob wins the bet. Bob bets on tails. Alice tosses the coin, which lands on heads. Nixon puts
away the button.

And now, consider the following counterfactual:

(6) If Bob had bet on heads, he would have won and Nixon would have launched a nuclear attack.

(6) seems true, but this is not predicted by Lewis’smetric. Consider worlds where Bob bets on heads and loses because
of the coin landing differently, and compare them to theworlds where Bob bets andwins, and there is indeed a nuclear
holocaust. e two kinds of worlds are tied with regard to criteria (1)–(3), and worlds of the former kind come out
ahead on criterion (4).

⁷What about Kratzer? Her most recent account of the information contained in premise sets (which dates back
to her 1989) exploits a relationship of ‘lumping’, i.e. a kind of mereological relationship between situations. It is
just unclear to me to what extent this account would manage to incorporate facts about causal dependence and
independence.

⁸anks to [name omitted for blind review] for the example.
⁹An anonymous referee worries that, once we consider noncausal dependencies, using Pearl-style structural equa-

tions models may lead to an uninformative or unexplanatory semantics. e worry goes as follows. Perhaps we have
an intuitive grip on causal structures that is independent of our judgments about counterfactuals. But we don’t have
an equally intuitive grip on noncausal dependencies. Hence, in order to build noncausal dependence models, we
will have to rely on our judgments about counterfactuals, and this will make the semantics uninformative, or un-
explanatory, or both. I see the worry, and I agree that decisions about dependence modeling may be driven just by
our judgments about counterfactuals. But I think that the resulting semantics would still be informative, and even
predictive, in key respects. In particular, one central task of a semantics for conditionals is characterizing their logic.
is allows us to predict the linguistic data that is the basis of our theorizing about conditionals, i.e. what patterns of
conditionals speakers find consistent or inconsistent. But what logic we get is independent of choices of background
information. Hence it may be that a semantics based on generalized dependence models will not be explanatory at
the level of characterizing truth conditions of individual counterfactuals. But it will still provide interesting expla-
nations of the consistency or inconsistency of patterns of counterfactuals, and will be part of an explanatory theory
of counterfactual reasoning.
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3 Causal models

is section gives a basic overview of the causal models framework. is introduction is very
informal and I feel free to pick and choose among pieces of the framework. In particular, I will
completely ignore applications of the framework in a probabilistic setting. is leaves out the
main use of causal models in the literature, but it allows me to highlight the conceptual core of a
causal-models-based treatment of counterfactuals, i.e. the notion of an intervention. is work
might need to undergo a probabilistic refinement at a later stage, but it’s anyway useful to start
working with basic versions of the key notions.

3.1 e basic framework

e main ambition of the causal models framework is modeling how events in a causal network
are dependent or independent of one another, and how a change in the outcome of one event
affects the others. While there are different ways of setting up causal models formally, they all
rely on the the core ideas I introduce here.

A causal model consists in an ordered pair of two elements: ⟨V, E⟩. V is a set of random
variables. A random variable can be thought of as a set of mutually exclusive and jointly ex-
haustive outcomes for a process. For example, a random variable may represent the state of a
thermostat; the thermostat being on and the thermostat being off are the two values of the vari-
able. In philosophy and semantics, this structure is familiar from partitions of logical space, and
is oen used to capture the denotation of an interrogative clause (see, among many, Lewis 1982,
and Lewis 1988, Groenendijk & Stokhof 1984). Hence one intuitive way to think of a random
variable is to identify it with the content of a question.

e second element of a causal model, E, is a set of structural equations. Structural equa-
tions are mathematical equations that state the relations between different values of random
variables. For example, a structural equation may state that the answer ‘yes’ (or, the value ‘1’)
to the question whether the thermostat is on correlates with the answer ‘yes’ (or, the value ‘1’)
to the question whether the temperature in a room is above 70 degrees.

It’s useful to go through an example in detail. I will use a classical example from Pearl 2000.
Readers familiar with it should feel free to skip ahead.

e firing squad. A firing squad is positioned to execute a prisoner. e squad is
waiting for a court order. e court issuing the execution order will result in the
captain sending a signal to the two members of the squad, X and Y, who will fire
and kill the prisoner. e court not issuing the order will result in the captain not
sending the signal, the two riflemen not shooting, and the prisoner remaining alive.

Here is a causal model for this scenario:

Random variables Structural equations
U: whether the court orders the execution
C: whether the captain sends the signal
X: whether shooter X shoots
Y: whether shooter Y shoots
D: whether the prisoner dies

C = U
X = C
Y = C
D = max(X, Y)
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Random variables are traditionally divided into exogenous and endogenous ones. Exogenous
variables are those whose values are determined by factors external to the model. Endogenous
variables, conversely, are those whose values are determined by factors within the model. In the
toy model provided, U is the only exogenous variable. is can be seen from the fact that there
is no equation that has U on the le-hand side.

Strictly speaking, structural equations are just mathematical equations and hence can be
read in either direction. But, by convention, they are read directionally. e value of the vari-
able on the le-hand side is taken to be determined by the value of the variable on the right-hand
side. Hence, for example, ‘X = C’ is read as indicating that whether rifleman X shoots is deter-
mined by whether the captain issues the signal. Of course, this is more informative than the
material equivalence ‘X shoots just in case the captain issues the order’. is feature of struc-
tural equations is crucial both for capturing counterfactual reasoning within the causal models
framework and for the innovations introduced by filtering semantics.

Causal models are usually represented visually by means of directed graphs, i.e. diagrams
in which nodes represent random variables and arrows represent relationships of causal depen-
dence. is is the graph corresponding to our toy model:¹⁰..

court order

.

captain signaling

.

X firing

.

Y firing

.

prisoner’s death

In general, in a causalmodel there is no guarantee that the set of equations will have a unique
solution, or any solution at all, for all or even some set of input variables. But we can narrow
down consideration to classes of causal models that do have unique solutions in this sense. One
important subclass of models that possess this feature is the class of so-called recursive models.
Recursive models are the ones in which we can define a relation ≺ between random variables
such that: (a) X ≺ Y iff the value of X is not dependent on the value of Y; and (b) ≺ is a total
order. Intuitively, recursive models are the ones where causal dependencies don’t go in circles.
Graphically, recursive models can be represented via acyclic graphs—graphs where one cannot
start from and come back to the same point by following the arrows. It should be easy to check
that our model about the prisoner scenario is recursive.

Recursive models are not the only models where a unique solution to the equation is avail-
able. An example involving a nonrecursive model with a unique solution will be at the center

¹⁰Notice that the visual representation generally produces a loss of information. e arrows represent causal
dependence, but they are silent about exactly what that dependence involves. For example, the graph above doesn’t
specify whether the dependence between D, on the one hand, and X and Y, on the other, is conjunctive or disjunctive.
it is compatible with two distinct equations having D on the le-hand side:

D = min(X, Y)
D = max(X, Y)

Hence the reader should take graphs just as convenient props. e full specification of a causal model is given by the
set of random variables and the set of equations.
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of my discussion in section 6.

3.2 Evaluating counterfactuals

Causal models can be used to provide an evaluation procedure for counterfactuals. For a num-
ber of reasons, this evaluation procedure cannot be seen as a real semantics for counterfactuals
in natural language.¹¹ Nevertheless, some conceptual tools involved in this procedure may be
put to use in a compositional semantics.

e key notion is that of an intervention. As a first approximation, an intervention is a ma-
nipulation of one of the variables that is made ‘from the outside’ of a model: i.e., a manipulation
that doesn’t go through the variables that are causally upstream within the model. Technically,
an intervention consists in the replacement of one of the structural equations in the model with
a different equation. To evaluate a counterfactual, we proceed in two steps. First, we perform
an intervention on the model to make the antecedent true. en, helping ourselves to the mod-
ified set of equations and holding fixed the values of the exogenous variables, we recalculate
the values of the endogenous variables and check whether the consequent holds. Technically,
this means that the evaluation of a counterfactual in a causal model ⟨V, E⟩ requires building a
derived model ⟨V, E′⟩, which involves a modified set of equations. e derived model is used
to assess the consequent for truth and falsity.

For illustration, take again the prisoner scenario and suppose that the court didn’t issue the
execution order. en all the variables in the model receive value 0 and the prisoner stays alive.
Consider the following counterfactual:

(8) If X had fired, the prisoner would have died.

e first step for the evaluation of (8) is the replacement of the old equation with X on the
le-hand side with a new equation that specifies the new value for X. Here is the new model:

C = U
X = 1
Y = C
D = max(X, Y)

At this point, holding fixed the values for the exogenous variables, we recalculate from scratch
the values of the endogenous variables. From the new equation ‘X = 1’, together with the equa-
tion ‘D = max(X, Y)’, we get that D = 1, i.e. the prisoner dies. Hence the counterfactual is eval-
uated as true. Notice that, given the way that the procedure is set up, all the values of variables
that are upstream with respect to the intervention are guaranteed to remain the same; values of
other variables may change.

¹¹Let me mention here three reasons. First, the procedure provides a way of assigning a truth value to a coun-
terfactual relative to a causal model; but, to get a full semantics for counterfactuals out of this, we should be able
to say what model is relevant for the evaluation of a counterfactual. For a discussion of this point, see Hiddleston
2005. Second, in discussions of causal models in computer science and philosophy of science there is just no at-
tempt at incorporating the evaluation procedure into a real compositional semantics for natural language. ird, the
original procedure formulated by Pearl only covered a subclass of counterfactuals with certain syntactic properties
(essentially, counterfactuals whose antecedents involved atomic sentences or conjunctions thereof). While substan-
tial work has been done to broaden this coverage (see for example Halpern 2000 and Briggs 2012), to date there is
no comprehensive treatment of counterfactuals of arbitrary syntactic complexity in Pearl’s framework.
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e modified model can be captured by a new graph. e fact that the causal dependence
of X on C is now ignored is represented by the fact that the arrow going from the latter node
into the former is removed: ..

court order

.

captain signaling

.

X firing

.

Y firing

.

prisoner’s death

.

0

.

0

.

1

.

0

is evaluation procedure is designed to handle a limited range of counterfactuals. Galles
& Pearl 1998 and Pearl 2000 restrict themselves to counterfactuals where antecedents are sim-
ple sentences—essentially, atomic sentences of the language or conjunctions thereof (though
see, among others, Briggs 2012 for an interesting attempt at generalizing the procedure to more
complex counterfactuals). One advantage of implementing this algorithm in filtering seman-
tics is that we automatically get a general formal system for handling counterfactuals of any
complexity.

4 Filtering semantics for counterfactuals: basics

4.1 e goal

Much work has gone into comparing comparative closeness semantics with the interventionist
account. Initially, this work has focused on the logic. Galles & Pearl 1998 argued that, if we re-
strict consideration to recursive models and to a simple language involving exclusively atomic
sentences and conjunction, the causalmodels framework validates the logic generated by Lewis-
style possible worlds models (in addition to enforcing some further conditions).¹² Much work
has gone into investigating analogous claims for larger categories ofmodels andmore expressive
languages. e general conclusion (see, for example, Briggs 2012) seems to be that, as soon as
we relax the constraints assumed by Galles and Pearl, the logics generated by the causal mod-
els framework starts diverging substantially from counterfactual logics in the possible worlds
tradition.

Attempts at implementing causal-models-type reasoning in a compositional semantics for
modality are more recent. e most detailed attempt in this direction is Stefan Kaufmann’s
(2013). Kaufmann also starts from Kratzer semantics, which he modifies by imposing a lexico-
graphic ordering on the propositions in the premise set. Despite the changes, his conclusion is
that implementing the conceptual tools of causal models into premise semantics can be done
without major changes:

¹²I refrain from a more precise statement of this claim, since it is the object of contention: see Halpern 2013: pages
305-307 for discussion. I say ‘argued’ rather than ‘showed’ because Galles and Pearl’s result, though correct, was
obtained via a not entirely correct proof, as Halpern shows.
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[A] a premise semantic account of the causal inferences that tend to enter the inter-
pretation of counterfactuals is not only possible, but in fact fairly straightforward.
(2013, p. 1163)

It’s true that, in the kind of causal scenarios that Kaufmann considers, a modified version of
Kratzer’s premise semantics will get results and predictions that parallel those of Pearl’s frame-
work. But this similarity hides a substantial divergence between the two frameworks, which (as
it happens for the case of the logic) is revealed when we start looking at different kinds of cases.
is divergences are not a mere accident, but they stem from a conceptual difference between
the causal models framework and classical premise semantics: the two frameworks rely on dif-
ferent algorithms for resolving inconsistency. Hence their divergence has to do with the very
core of the semantics for counterfactuals, and modality in general. Exposing this difference,
and building a causal-models-based semantics that captures it, is my main goal in this paper.

Here is the plan from now on. In this section, I give a basic version of the semantics, high-
lighting from the start the main element of divergence, and how this element leads to a new
semantics. In section 5, I introduce some needed refinements, and in section 6 I show how the
old and the new semantics differ in predictions.

4.2 Overview of the semantics

As Kratzer points out, the resolution of inconsistency is one of the central elements in a seman-
tics for counterfactuals:

Premise sets can be inconsistent, so the mechanism I was aer had to be able to
resolve inconsistencies. I believed then, and still believe now, that the semantics
of modals and conditionals offers an ideal window into the way the human mind
deals with inconsistencies. (2012, p. 1)

Classical premise semantics handles inconsistent premise sets by considering all maximal con-
sistent subsets of the inconsistent set. Crucially, the causal-models-based evaluation of coun-
terfactuals operates in a different way. Together with the inconsistency-generating antecedent,
we receive instructions to remove some specific piece of information from our previous stock.
Hence, together with the addition of information to the existing stock, we have a loss of previ-
ously existing information. is solves immediately the problem of inconsistency; there is no
need to consider subsets of the premise set. In this section, I set up a basic version of a new
premise semantics that implements this conceptual shi. e next section is devoted to devel-
oping a new, more general version of the semantics.

e main innovation is the filtering operation. On classical premise semantics, the an-
tecedent of a counterfactual is simply added to the (otherwise empty) modal base:

(4) Jif ϕ, would ψKw, f ,g = 1 iff, for every maximal consistent superset S of f (w)∪ {ϕ} with
respect to g(w), S ⊨ JψKw, f ,g

e new semantics adds an extra step: the ordering source is filtered for the antecedent. Hence,
while some information is added to the modal base, some other information is removed from
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the ordering source.¹³ In diagram form:

Context −→

Initial PS

p
q
r

. . .

−→

Filtering

p
q
r

. . .

−→

Filtered PS

q
r

. . .

I say that the union of the modal base and the ordering source is filtered for the antecedent
( f (w) ∪ g(w) is filtered for ϕ). I represent this operation by the vertical bar ‘|’, using ‘X|p’ for
‘X is filtered for p’. Here is a first-pass new meaning for counterfactuals:

(9) Jif ϕ, would ψKw, f ,g = 1 iff [{ϕ} ∪ g(w)]|ϕ entails ψ

(Read: Jif ϕ, would ψ, evaluated relative to f , g, and w, is true just in case the union of {ϕ} and
g(w), filtered for ϕ, entails ψ.) Notice one effect of filtering: in general, counterfactuals with
different antecedents filter out different information from the ordering source. Hence they are
evaluated with respect to different sets of propositions. In other words, the premise sets we use
to evaluate consequents become antecedent-dependent.

4.3 Directional premises

e implementation of filtering requires modifying the format of the ordering source. Recall
from section 3: interventions crucially exploit the directionality of the equations. To implement
a similar algorithm in premise semantics, we need to keep track of direction as well—we need
to be able to say what determines what. Hence the premises we use need to be more informative
than in standard systems.

To this end, I treat the members of the ordering source not as propositions, but as pairs
of a question denotation and a proposition. Intuitively, the question specifies which random
variable is settled by the proposition. For example, the equation ‘X = C’ is turned into the pair:

⟨{{w: X fires in w}, {w: X doesn’t fire in w}}, {w: X fires iff C gives the order in w}⟩

e question element indicates that the proposition settles whether X fires or not. e proposi-
tion element specifies the conditions under which X fires. A premise is a pair of a question and
a proposition. For simplicity, I take all questions in play to be binary yes-no questions, though
this is not required.

e foregoing settles the structural features connected to the ordering source in the new
semantics. But what information is built into the ordering source? For present purposes, I will
just show how to import information from a causal model into an ordering source in premise
semantics. While a plausible semantics for counterfactuals might demand more sophistication,
I only aim at setting up a basic apparatus that implements causal-models-style reasoning in
premise semantics.

¹³Notice: I’m assuming, together with Kratzer herself, that the ordering source of counterfactuals contains consis-
tent propositions, and that the only potential element of inconsistency is generated by the addition of the antecedent
to the modal base. is is in line with the common assumption that the ordering source in use for counterfactuals
specifies how similar other worlds are to a single world, i.e. the actual world. is ensures that all the propositions
that are used to induce the ordering are consistent (since they’re all true in the actual world).
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e new ordering source, mirroring causal models, will incorporate information of two
kinds: (a) information about causal dependencies and independencies between relevant events
(corresponding to structural equations) and (b) information about some background facts (cor-
responding to the values of exogenous variables). For illustration, this is how the equations in
the execution model get transposed into premises:¹⁴

C = U ⇒ ⟨{c, c̄}, c ↔ u⟩
X = C ⇒ ⟨{x, x̄}, x ↔ c⟩
Y = C ⇒ ⟨{y, ȳ}, y ↔ c⟩
D = max(X, Y) ⇒ ⟨{d, d̄}, d ↔ (x ∨ y)⟩

Notice that every question in the pairs is related to the random variable appearing on the le-
hand side of the equation. Also the information about exogenous variables is encoded in this
form. is time the question in play has as its members the proposition itself and its negation.
Assuming that the court does not issue the order, we get:

U = 0 ⇒ ⟨{u, ū}, ū⟩

Setting up a premise semantics in this way involves a number of idealizations.¹⁵ Here I don’t
investigate how to eliminate them: the reason is that Iwant to keep things simple on this end, and
focus on different issues. But they can be relaxed; for example, some of the ideas in Kaufmann’s
(2013) semantics serve exactly this purpose.¹⁶

¹⁴For readability, I use some italic letters to stand for the relevant propositions.
¹⁵Let me flag some of them. First, I’m assuming that, for any counterfactual, we can specify an appropriate list

of equations and background facts with respect to which the counterfactual is evaluated. Second, I’m assuming
that we can appeal to a clearcut distinction between “background” variables, whose causal history we ignore, and
“foreground” variables, whose causal history we track via propositions about causal dependencies. is distinction
corresponds to the distinction between exogenous and endogenous variables. ird, I’m assuming that, for each
context, we can single out a determinate stock of all and only causally relevant variables and dependency relations
that we can represent into the ordering source. In short, I’m importing into a Kratzer-style semantics the idealizing
assumptions that are required for modeling a situation via a (nonprobabilistic) causal model.

¹⁶Kaufmann’s key maneuver is to impose a structure on premise sets. Rather than a set of individual propositions,
he uses a set of sets of propositions. e relevant sets of propositions have to be closed under causal ancestors. For
example, take the simple causal model depicted below:

..Captain’s order .X firing. Prisoner’s death

Suppose that the equations of the model are
X=C
D=X

and that C=X=D=1. en the relevant premise set is, on Kaufmann’s semantics
{{c}{x, c}{d, x, c}}

(where the lowercase variable stand for the positive values of the relevant random variables).
My solution of appealing directly to the values of the background variables (which closely mirrors Pearl’s own pro-

cedure for evaluating counterfactuals) obtains equivalent results to Kaufmann’s semantics, as long as (a) we consider
only deterministic processes, and (b) the information contained in the equations is built in full into the ordering
source.
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4.4 Basic filtering

e filtering mechanism uses questions to determine which premises should be filtered out by
the antecedent. On this basic version of the semantics, a premise is filtered just in case the an-
tecedent settles the answer to its question. e intuition lying behind this is obvious: conditional
antecedents are used to settle the answers to questions in the premise set.

Here is a formal statement of the algorithm. Let’s say that:

A proposition p answers a premise P iff P = ⟨Q, r⟩ and p ∈ Q.

With this definition in hand, we can define the filtering of a premise set:

A filtering of a premise set Π relative to proposition p is a premise set Π′ such that,
for all premises P ∈ Π:

◦ if P is not answered by p, P ∈ Π′;

◦ if P is answered by p, ⟨{p, p̄}, p⟩ ∈ Π′.

In short, we build a filtered premise set Π′ from an original premise set Π by (a) carrying over
any premise that is unaffected by the antecedent, and (b) replacing premises whose question is
settled by the antecedent with a simple premise where the question consists of the antecedent
and its negation, and the proposition is just the antecedent itself.

To state a semantics, we need one further piece of apparatus. Premise sets are now more
complex than simple sets of propositions. Hence, as things are, we cannot use the standard
notion of a proposition being entailed by a premise set. e fix is simple: we just take the set of
all propositions involved in a premise set. I call this the proposition set of a premise set Π, or
PropΠ. Formally:

e proposition set of a premise set Π is the set PropΠ such that:
PropΠ = {p : ∃P ∈ Π : for some Q, P = ⟨Q, p⟩}

Here is a semantics for counterfactuals (minimally different from the first-pass statement in (9)):

(10) Jif ϕ, would ψKw, f ,g = 1 iff the proposition set of [{ϕ} ∪ g(w)]|ϕ entails ψ

Let me show how this solves a basic example. Consider again (8), repeated below:

(8) If X had fired, the prisoner would have died.

Here is how the semantics handles (8). e initial premise set (on the le) gives rise to the
premise set filtered for the antecedent (on the right, changes in boldface):

⟨{c, c̄}, c ↔ u⟩ ⟨{c, c̄}, c ↔ u⟩
⟨{x, x̄}, x ↔ c⟩ ⟨{x, x̄}, x⟩
⟨{y, ȳ}, y ↔ c⟩ =⇒ ⟨{y, ȳ}, y ↔ c⟩
⟨{d, d̄}, d ↔ (x ∨ y)⟩ ⟨{d, d̄}, d ↔ (x ∨ y)⟩
⟨{u, ū}, ū⟩ ⟨{u, ū}, ū⟩

It’s easy to check that the propositions in the new premise set entail the consequent, hence the
counterfactual is predicted to be true.
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4.5 Summary

Filtering semantics differs from classical comparative closeness semantics in one key respect.
On classical semantics, we evaluate a counterfactual by adding the antecedent to our stock of
information, and we check all ways of making that stock consistent. On filtering semantics, we
also remove some information from our existing stock. In a slogan, classical semantics employs
a ‘global’ strategy for solving inconsistency (“check all ways to make the premise set consis-
tent”), filtering semantics a ‘local’ strategy (“check some ways to make the premise set con-
sistent, specifically the ones that ignore information about the causal links upstream from the
antecedent”).

is concludes my outline of the basic implementation of filtering semantics. e next sec-
tion is devoted to refining the semantics, in the light of pretty obvious problems of this first-pass
version. Readers not interested in these details may skip ahead to section 6, where I discuss the
empirical upshot of filtering semantics.

5 Filtering semantics: complications

5.1 Minimally different models

e basic semantics I gave in section 4 won’t work. e reasons is that the filtering operation
won’t, in general, yield a unique result. ere may be multiple ways to filter a set of premises for
an antecedent. To see this, consider oncemore the prisoner scenario and take the counterfactual:

(11) If rifleman X or rifleman Y had shot, the prisoner would have died.

e antecedent of (11) doesn’t trigger any filtering. Recall the premise set I’ve been using:

(12)

⟨{c, c̄}, c ↔ u⟩
⟨{x, x̄}, x ↔ c⟩
⟨{y, ȳ}, y ↔ c⟩
⟨{d, d̄}, d ↔ (x ∨ y)⟩
⟨{u, ū}, ū⟩

e problem is obvious: there are (at least) two ways to filter the premise set. e antecedent
doesn’t settle how to do it. Hence the naïve filtering mechanism I considered above would pre-
dict that the premise set doesn’t change. is is not the result we want.¹⁷

Let me restate the problem informally. e key idea behind filtering is that we modify the
background information that we use to evaluate a conditional. Our first-pass attempt simply as-
sumes that each conditional antecedent settles how this information should be modified. is
is too simplistic. Conditional antecedents may be too unspecific to determine exactly how the
relevant information changes. e natural suggestion is that we consider multiple ways of mod-
ifying the background information in the light of the antecedent. In technical terms, the sug-
gestion is that the semantics should considermultiple ways of filtering the premise set. is basic

¹⁷With the current setup of the semantics, we would get back an inconsistent premise set, which would make all
counterfactuals with the same antecedent as (11) trivially true (or, if we tried to enforce a kind of nonvacuousness
presupposition, defective).
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suggestion is simple enough, but we need some work to establish exactly what counts as an
appropriate way to perform the filtering.

On a first pass, wemight consider allways to filter the premise set that make the conditional
antecedent true.¹⁸ In formal terms, this amounts to considering all ways of settling the ques-
tions in the premise set that entail the antecedent of the conditional. For example, if we use the
antecedent of (11) to filter the premise set in (12), we proceed by considering all ways of settling
the questions in (12) that make either x or y true. On the resulting proposal, a counterfactual
is true iff the consequent is entailed by all filterings generated in this way.

It’s easy to see that this is too strong. Among all the filterings that make ⌜x ∨ y⌝ true, there
are some that make d false. Hence, if our semantics looks at all filterings that make the an-
tecedent true, it will declare (11) false. In general, the problem is the following: by considering
all filterings that verify the antecedent, we end up considering scenarios that are intuitively ir-
relevant to the truth value of a conditional.

Here is a better suggestion. We build on the ‘minimal difference’ intuition that is at the
basis of counterfactual semantics since Stalnaker and Lewis. In the context of a causal models-
based semantics, the ‘minimal difference’ intuition is naturally cashed out in terms of minimal
antecedent-verifying interventions: i.e., interventions that change as few premises as possible,
while still generating a premise set that entails the antecedent. Informally, and on a first pass,
here are the new truth conditions of a counterfactuals:

⌜ϕ� ψ⌝ is true relative to a premise set Π iff all the minimal filterings of Π that
make ϕ true also make ψ true.

In several ways, this semantics is similar to semantics for counterfactuals thatmake use of truth-
makers¹⁹, though I avoid appeal to metaphysical truthmakers. e role of truthmakers is played
by ways to manipulate the background causal structure—or, equivalently, as sets of answers to
the questions in the premise set.

enew version of the semantics includes an algorithm that implements these intuitive ideas
in a formal system. For illustration, let me anticipate the result of the proposal for (11). e
semantics considers the following two filterings—one for each of the disjuncts:

(13)

⟨{c, c̄}, c ↔ u⟩
⟨{x, x̄}, x ↔ c⟩
⟨{y, ȳ}, y ↔ c⟩
⟨{d, d̄}, d ↔ (x ∨ y)⟩
⟨{u, ū}, ū⟩

=⇒

⟨{c, c̄}, c ↔ u⟩
⟨{x, x̄}, x⟩
⟨{y, ȳ}, y ↔ c⟩
⟨{d, d̄}, d ↔ (x ∨ y)⟩
⟨{u, ū}, ū⟩

=⇒

⟨{c, c̄}, c ↔ u⟩
⟨{x, x̄}, x ↔ c⟩
⟨{y, ȳ}, y⟩
⟨{d, d̄}, d ↔ (x ∨ y)⟩
⟨{u, ū}, ū⟩

¹⁸anks to an anonymous referee for pushing me to discuss explicitly this case.
¹⁹For some recent versions of truthmaker semantics for conditionals, see Fine 2012a and 2012b, Yablo 2014.

Among other things, filtering semantics goes some of the way towards vindicating the logic of Fine’s semantics,
though not all of the way.
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I call the premise sets resulting from this procedurepermissible filteringsof the original premise
sets. Hence the new schematic truth conditions of a counterfactual are:

(14) Jif ϕ, would ψKw, f ,g = 1 iff for all Π s.t. Π is a permissible filtering of [{ϕ} ∪ g(w)] for
ϕ, the proposition set of Π entails ψ

e rest of this section is dedicated to giving a precise formal definition of a permissible filtering.

5.2 Permissible filterings

Before starting, one caveat. So far, the semantics I have developed stays close to the machinery
shared by all versions of the causal models framework. At this point, I have to go beyond. e
basic version of the causal models framework can handle only a simple array of counterfactuals;
for example, the theory doesn’t settle how to handle counterfactuals whose antecedent doesn’t
exactly coincide with an answer to one of the relevant questions, like (11). I have chosen to
develop a technology that is both intuitive and relatively conservative with respect to premise
semantics. But it’s only one of the available options.²⁰

Here is the basic idea. We use something like the converse of the filtering algorithm we had
in section 4. ere we checked whether the antecedent of a conditional settled the answer to
any questions in the premise set. Now we check which answers or combinations of answers in
the premise set entail the antecedent. In particular, we check which minimal combinations of
answers (for some suitable way of understanding minimality) will make the antecedent true.
is will capture the idea that filterings are minimal ways of modifying the premise set that
make the antecedent true.

Before developing the formalism, let me illustrate the idea intuitively with diagrams. We
start by considering the set of all the questions present in a premise set (call it ‘question set’).
For example, in the prisoner scenario again, we get the following set:

ΣΠ = {{u, ū}, {c, c̄}, {x, x̄}, {y, ȳ}, {d, d̄}}

We can draw a diagram representing visually the questions in ΣΠ. What we get is a partition,
where each cell represents a combination of answers. e first step for determining permissible
filterings is locating the antecedent ⌜x ∨ y⌝ on this partition via a dotted line. (I use only three
questions to reduce visual clutter).

²⁰Let me highlight two features of the semantics that are the result of taking choice points and that could be easily
altered without affecting the basic idea. First, a disjunctive antecedent might induce more than two permissible
filterings (in particular, we may add a permissible filtering that filters for both disjuncts); second, the quantification
over permissible filtering may not be universal.
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x

.

x̄

.

y

.

ȳ

.

u

.

ū

en we check which cells in the diagram are wholly contained in the dotted area. is will tell
us which cells make the antecedent true. In doing this, though, we don’t consider immediately
any old cell. We start by taking cells to be invisible. We make cells visible progressively by
making more and more answers visible. As soon as we hit on a cell that is completely included
in the dotted area, we mark the corresponding area as ‘covered’, mark down the answers we
made visible in the process, and then start afresh.

For example: suppose that we start by making visible the cell corresponding to answer x. (I
mark visibility by using colored, thick borders.)

..

x

.

x̄

.

y

.

ȳ

.

u

.

ū

We observe that this cell is already fully contained in the dotted area. At this point, we make it
invisible again and mark the corresponding area as covered (via the shading). We then proceed
to make visible further cells. In our case, we will make y visible:
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We stop when the whole dotted area is covered. In our example, these two rounds are enough
to cover the whole area.

..

x

.

x̄

.

y

.

ȳ

.

u

.

ū

{x} and {y} are the sets of answers we’ve used to cover the whole dotted area. It’s easy to check
that they are the smallest sets of answers we can use to do this. e various sets of cells that
we’ve made visible in our two rounds will give us the permissible filterings. e set of these sets
I call the filter set of the premise set, relative to the antecedent.

is should be enough to give an intuitive picture of how filtering works; I include more
examples in a footnote.²¹ Notice that, despite the heavy reliance on partitions, this filtering

²¹Consider first the conjunctive antecedent ⌜x ∧ y⌝. In this case, we need to make visible both x and y together
to get a cell that is enclosed in the dotted area. Once we do this, the whole dotted area is covered.
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Hence the antecedent ⌜x ∧ y⌝ generates only one permissible filtering, i.e. the one resulting from filtering both
⟨{x, x̄}, x ↔ c⟩ and ⟨{y, ȳ}, y ↔ c⟩.

Finally, let me illustrate a more complex Boolean compound, i.e. ⌜x ∧ (y ∨ u)⌝. In this case, we have to make
visible two answers at a time to get a cell that is included in the dotted area. In the diagram below, I first make visible
x and y, and then x and u.

19



procedure still yields an intensional semantics: necessarily equivalent antecedents (and hence,
among other things, logically equivalent antecedents) give rise to the same filterings, keeping
fixed the premise set.

5.3 Formal semantics

Below I state the final version of filtering semantics in full detail. e exposition is technical, but
I’ve already given the main ideas; so readers not interested in the formalism may skip ahead.

I start from a basic version of Kratzer semantics for modality. I assume an intensional sys-
tem: the interpretation function is relativized to a series of index parameters, including a world,
a modal base, and an ordering source. e semantics is static, hence denotations of clauses
are standard propositions, taken to be functions from worlds to truth values. is assumption
serves just the purposes of simplicity. So far as I can see, all relevant changes could be exported
in full into a dynamic system, in which counterfactuals are taken to denote functions for updat-
ing the context (e.g. in the style of von Fintel 2001 and Gillies 2007).²²

Before getting to the semantics proper, I must lead you through a few definitions. I already
used the notion of a question set: the question set of a premise set Π is simply the set of all
questions appearing in the premise set:

(15) ΣΠ = {Q : ∃P ∈ Π : for some p, P = ⟨Q, p⟩}

It’s useful to define the answer set of a question set. e answer set is just the set of all the answers
appearing in the question set. Since question sets are sets of sets of propositions, formally the
answer set is just the union set of its question set.

(16) AΠ =
∪

ΣΠ

Notice that, while the question set is a set of sets of propositions, the answer set is just a set of
propositions.

Here is how I capture filtering. Given a counterfactual antecedent p, we single out the min-
imal subsets of the answer set AΠ that entail p. e set of these subsets I call the filter set of a
premise set, relative to an antecedent.

e filter set of a premise set Π relative to proposition p is the set ΦΠ,p of all
minimal subsets S′ of the answer set AΠ such that S′ ⊨ p
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Hence the antecedent ⌜x∧ (y∨ u)⌝ triggers two permissible filterings. On the first, we filter out both ⟨{x, x̄}, x ↔ c⟩
and ⟨{y, ȳ}, y ↔ c⟩, on the second both ⟨{x, x̄}, x ↔ c⟩ and ⟨{u, ū}, ū⟩. Notice that these are the same filterings
we would get from the equivalent ⌜(x ∧ y) ∨ (x ∧ u)⌝ proposition.

²²As in section 2, for simplicity I allow myself to be sloppy and use the labels ‘modal base’ and ‘ordering source’
both for f and g proper, and for the sets f (w) and g(w), determined by plugging the world of evaluation w as an
argument of the two functions. I trust that the reader will be able to disambiguate when needed.
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In symbols:

(17) ΦΠ,p = {S′ ⊆AΠ : S′ ⊨ p and ¬∃S′′ : S′′ ⊂ S′ and S′′ ⊨ p}

Finally, we define the notion of a permissible filtering. Informally, a permissible filtering of a
premise set Π relative to a proposition p is the result of (a) picking a set of propositions from the
relevant filter set and (b) filtering out all and only the premises whose questions are answered by
that set of propositions. Here is how to get a precise definition: we start by defining the notion
of a proposition answering a premise. A proposition answers a premise just in case it is one of
the answers to its question.

A proposition p answers a premise P iff P = ⟨Q, r⟩ and p ∈ Q.

Now we’re ready to define permissible filterings:

A permissible filtering of a premise set Π relative to proposition p is a premise
set ΠΦ,p such that, for some set of propositions S in the filter set ΦΠ,p and for all
P ∈ Π:

◦ if P is not answered by any proposition in S, P ∈ ΠΦ,p;

◦ if P is answered by some q in S, ⟨{q, q̄}, q⟩ ∈ ΠΦ,p.

To repeat the main idea: if a premise is not filtered out, it is carried over from the premise set to
the permissible filtering; if it is filtered out, it is replaced by a premise whose proposition is just
the relevant answer.

Let me give an illustration. Take again the counterfactual:

(11) If rifleman X or rifleman Y had shot, the prisoner would have died.

Let the relevant ordering source be g(w). Here is the question set of g(w) (repeated from
above):

(18) Σg(w) = {{u, ū}, {c, c̄}, {x, x̄}, {y, ȳ}, {d, d̄}}

Here is the answer set:

(19) Ag(w) = {u, ū, c, c̄, x, x̄, y, ȳ, d, d̄}

We have already seen the filter set of g(w) with respect to the antecedent of (11). It is the set
containing the singletons of x and y:

(20) Φg(w),x∨y = {{x}, {y}}

Correspondingly, there are two permissible filterings of g(w) (i.e. those in (13)).
Now, finally, to the semantics proper.²³ Here is a schematic entry:

²³For simplicity, I just give a syncategorematic meaning for the modal would. I ignore all issues concerning tense,
including issues about the presence of the past tense in would. I am sympathetic to views on which would is not a
semantic unit, but rather should be decomposed into a modal auxiliary and a past tense. (For examples of accounts
based on this view, see, among many, Iatridou 2000, Condoravdi 2002, and Kaufmann 2005.) But I leave it to future
research to integrate the current account with this view.
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(21) Jif ϕ would, ψKw, f ,g = 1 iff ∀Π s.t. Π is a permissible filtering of [{ϕ} ∪ g(w)] relative
to ϕ, Π ⊨ ψ.

As usual in premise semantics, this mechanism can be easily generalized to modals with dif-
ferent quantificational force. We just need to use logical relations different from entailment:
for example, following Kratzer, we can use compatibility to capture the meaning of might-
counterfactuals.

6 Filtering and difference

6.1 A new semantics?

I have spent sections 4 and 5 setting up filtering semantics. But how different is really filter-
ing semantics from standard premise semantics? In particular, couldn’t we simulate the old
semantics somehow by means of the old semantics? Lewis (1979) famously refused to take a
notion of causation as primitive when specifying the ordering employed by the semantics for
counterfactuals. But we might try, against Lewis, to simulate the functioning of filtering seman-
tics by using explicitly causal information in the ordering source. One natural thought is that
a causal models-based semantics will be properly matched by an old-style premise semantics
with a causal ordering source.

But simulating filtering semantics is not so easy. ere are real divergences between classical
semantics and filtering semantics that cannot be just eliminated by cherry-picking the ordering
or the premise set. Let me highlight two of them.

e first is that, as I’m about to show, we get a different logic. is won’t change by ex-
ploiting a different ordering or premise set. A semantics fixes a logic via its structural features,
like the quantifiers in play and the formal properties of the ordering relation. How we interpret
the ordering relation doesn’t matter. As a result, we will still have a substantial difference in
empirical predictions. In fact, arguments from the logic have always been the strongest consid-
erations at our disposal to decide between different semantics of counterfactuals. e success
of comparative closeness semantics is due just to its capacity to account for logical properties of
counterfactuals that competing views (such as, for example, a naïve strict conditional analysis)
couldn’t predict. Insofar as we have differences in the logic, we will have similar arguments one
way or the other.

e second difference is more philosophical in nature and concerns the kind of information
that is employed by a semantics. Standard semantics for counterfactuals employs intensional
information to generate an ordering on worlds: to see this, notice that the information that is
included by Kratzer’s ordering source consists in ordinary possible worlds propositions. Filter-
ing semantics requires more structure. e new ordering source employs directional premises:
i.e., premises that include information about what determines what, according to some relevant
determination relation.²⁴ Hence, while filtering semantics is still intensional (in the sense that

²⁴Notice that, while throughout the paper I have stuck to the usual causal interpretation of Pearl’s framework,
nothing in the formal part of the theory dictates that we hold on to this interpretation. (In fact, philosophers have
started to find applications for the causal models framework that go beyond the causal case—see, for example,Wilson
2013.) What really distinguishes the premises used in filtering semantics from those used in standard semantics is
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it yields the same truth and falsity verdicts for necessarily equivalent antecedents and conse-
quents), it appeals to resources that go beyond standard intensional information. In particular,
its use of partitions and questions to capture determination relations establishes an interesting
link with a metaphysics that exploits grounding or other, related dependence relations. If filter-
ing semantics turns out to be correct, then our counterfactual thought and talk will turn out to
involve something like a notion of dependence, at least in structure.

6.2 A problem

Let me illustrate one point in which the logics generated by filtering semantics and standard
premise/ordering semantics diverge.²⁵ Consider the following scenario:

Love triangle. Andy, Billy, and Charlie are in a love triangle. Billy is pursuing
Andy; Charlie is pursuing Billy; and Andy is pursuing Charlie. Each of them is
very annoyed by their suitor and wants to avoid them.

ere’s a party going on and all three were invited. None of them ended up going,
but each of them kept track of whether the person they liked was going. Each of
themwanted an occasion to spend time with their beloved andwithout their suitor.
Having an occasion of this kind would have been sufficient for each of them to go.

I claim that, on at least one reading, (22) is judged true, while (23) is judged false, or at least
dubious.

(22) If Andy was at the party, Billy would be at the party.

(23) If Billy was at the party, Andy would be at the party.

By symmetry, we get the following set of judgments. On at least one reading, these counterfac-
tuals (call them ‘forward loop counterfactuals’) are judged true:

(22) A� B If Andy was at the party, Billy would be at the party.

(24) C� A If Charlie was at the party, Andy would be at the party.

(25) B� C If Billy was at the party, Charlie would be at the party.

On the same reading, these counterfactuals (call them ‘backward loop counterfactuals’) are
judged oentimes false, or dubious:

(23) B� A If Billy was at the party, Andy would be at the party.

(26) A� C If Andy was at the party, Charlie would be at the party.

(27) C� B If Charlie was at the party, Billy would be at the party.

the presence of direction of determination, and not a specific reference to causation.
²⁵As I mentioned in the introduction, the fact that a causal-models-based logic and standard counterfactual logics

diverge has emerged very recently in the literature on causal models. Halpern 2013 shows that, as long as we extend
consideration to a wide enough class of causal models (i.e. all causal models that, for all choices of exogenous vari-
ables, have a unique solution), the logics will differ. I learned of Halpern’s result only aer independently discovering
the evidence that instances of Loop seem to fail natural language.
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Once again, let me emphasize that I only have in mind one possible readings of the counter-
factuals (to me and other informants, this reading is the one that is naturally suggested by the
question ‘What would happen if Andy/Billy/Charlie was at the party?’). For all I need here, it
may well be that all of (22)–(27) have different truth values on other readings. is doesn’t affect
my argument.

To summarize: if my empirical claim is correct, there is a reading on which we get the fol-
lowing configurations of judgments:

A� B ✓ B� A%
C� A ✓ A� C%
B� C ✓ C� B%

eproblem is simple: it is impossible to accommodate these judgments in existing kinds of or-
dering or premise semantics. e proof is particularly quick for Stalnaker’s ordering semantics,
which assumes that the⪯w relation is a total order (i.e. all worlds are comparable, and there are
no ties: for all w′, w′′, exactly one of w′ ⪯w w′′ and w′′ ⪯w w′ holds). Here it is:

Since ⪯w is a total order, there is a unique closest world to w that is an A-world,
a B-world, or a C-world. Call this world w∗. Without loss of generality, suppose
w∗ is an A-world. Since A � B, w∗ is also a B-world. Since B � C, and since
w∗ is the closest B-world, w∗ is also a C-world. But then, since the (only) closest
A-world is also a C-world, A� C is true. QED.

e proofs for other versions of ordering and premise semantics are more involved, but have
the same structure. (e reader can consult Halpern’s 2013 for the proof concerning Lewis-
style semantics with limit assumption).

Before proceeding, let me quickly block a way of dismissing the data. e thought would be
simply to invoke context shi: forward loop counterfactuals would be evaluated with respect
to one ordering source; backward loop counterfactuals with respect to another. Obviously, on
these assumptions, standard Kratzer semantics can yield the right predictions for all of (22)–
(27). But this is not a good reply, for two reasons. First, appealing to context dependence with-
out independent motivation, and when a systematic account is available, is bad methodology.
Second, in this case in particular, not only do we lack reason to suspect a context change, but in
fact we have reason to think that there isn’t one.

As for the first point: Lewis himself pointed out in Counterfactuals that we can always ap-
peal to context shis to accommodate problematic data. By making enough assumptions about
context shis, we can even dismiss all the data motivating his original comparative closeness
semantics. But this, as he puts is, “defeatist”; for

it consigns to the wastebasket of contextually resolved vagueness something much
more amenable to systematic analysis than most of the mess in that wastebasket
(1973a, p. 13).

Lewis’s point applies in full to our scenario. In the case of (22)–(27), we have no independent
reason to think that there is a context shi. Indeed, it would seem extraordinary that context
should systematically shi just when we evaluate backward loop counterfactuals. Why should
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speakers be naturally inclined to favor one reading for the case of forward loop counterfactuals,
and a different reading for backward loop counterfactuals?

Second, it is a common assumption in semantics that, when a sentence has different readings
that differ in truth value, ceteris paribus speakers tend to focus on a true reading. is entails
that, if there is a single ordering source that makes all loop counterfactuals true, speakers will
tend to default to it when giving judgments. Yet this doesn’t happen. is is evidence that we
have a semantic phenomenon that cannot be dealt simply with with context shis.

6.3 L

Here is a more general way of stating the problem. Consider the following inference rule:

L ϕ� ψ
ψ� χ
χ� ϕ

ϕ� χ

L is a valid rule in the logics generated by classical premise semantics, as well as in all stan-
dard counterfactual logics. In fact, something stronger is true: L is an instance of a general
rule schema, which I call G L. All rules that are instances of G
L are valid in classical counterfactual semantics.

G L ϕ1 � ϕ2
ϕ2 � ϕ3
. . .
ϕk−1 � ϕk
ϕk � ϕ1

ϕ1 � ϕk

To my knowledge, L and G L haven’t been discussed in any detail in the lit-
erature on counterfactuals, either in philosophy or in semantics. ey do appear in the literature
on belief revision and nonmonotonic logic: see Kraus et al. 1990.²⁶ But L and G-
 L are important for my purposes because they show the point of divergence between
filtering and classical premise semantics. While they are valid in standard premise semantics,
they are invalid in filtering semantics.

To see how filtering semantics invalidates L, start by considering a simple causal model
for the party scenario:²⁷

²⁶Interestingly, in Kraus, Lehmann, and Magidor’s models, the validity of G L is just what forces
the relation of comparative closeness in play in their models to be transitive. Given that transitivity is necessary for
having an ordering, this seems to suggests that there is a connection between the validity of G L and
the semantics making use of an ordering. is is just a conjecture, though; I don’t know of any general result that
establishes this point.

²⁷Of course, this is not the only causal model we might use to represent the scenario. But the important thing is
that this is one natural model for the situation, and moreover one that allows us to capture L-violations.
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Random variables Structural equations
A: whether Andy goes to the party
B: whether Billy goes to the party
C: whether Charlie goes to the party

A = (C ∧¬B)
B = (A ∧¬C)
C = (B ∧¬A)

Notice that the model is not recursive; causal dependencies do run in circles here. is can be
seen very easily by looking at the graph, which is cyclic:

..Andy goes.

Billy goes

.

Charlie goes

At the same time, the model does contain information that is sufficient to determine the values
of the relevant variables: in particular, the model has a unique solution, the one on which all
the variables have value 0. ²⁸ In addition to this, and importantly for our purposes, the model
yields exactly the intuitive verdicts when it is used to evaluate the relevant counterfactuals. To
see this, consider how (22) (repeated below) is evaluated:

(22) If Andy was at the party, Billy would be at the party.

By intervening on A, we obtain a derived model with the following equations and graph:

..

A = 1
B = (A ∧¬C)
C = (B ∧¬A)

.Andy goes.

1

.

Billy goes

.

1

.

Charlie goes

.

0

As the graph shows, in the modified model B must have value 1 and C value 0. We will get
analogous results by intervening on each of the relevant variables in the model.

It’s easy to see that we get analogous results on filtering semantics. Forward loop counterfac-
tuals ((22), (24), and (25)) are predicted to be true; backwards loop counterfactuals ((26), (23),
and (27)) are predicted to be false. I illustrate in detail the case of (22) and (26); other cases are
perfectly symmetrical.

is is the initial premise set:

(28)
⟨{a, ā}, a ↔ (c ∧ ¬b)⟩
⟨{b, b̄}, b ↔ (a ∧ ¬c)⟩
⟨{c, c̄}, c ↔ (b ∧ ¬a)⟩

²⁸As Halpern 2013 points out, just nonrecursive models with a unique solution witness the divergence between
the logics generated by causal models and those generated by comparative closeness semantics.
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e antecedent of both (22) and (26) generates only one permissible filtering, namely:

(29)
⟨{a, ā}, a⟩
⟨{b, b̄}, b ↔ (a ∧ ¬c)⟩
⟨{c, c̄}, c ↔ (b ∧ ¬a)⟩

It’s easy to check that the propositions in the premises in (29) entail b and c̄, thus yielding the
intuitively right predictions for (22) and (26).

Notice that filtering is crucial to get this result. If we evaluated the counterfactuals by using
the same ordering source (modulo the difference in the type of the premises), but using classi-
cal premise semantics, all counterfactuals (22)–(27) would be predicted to be false, and all the
corresponding might counterfactuals would be predicted to be true.

6.4 Remarks on filtering logic

e premise set I give above witnesses the failure of L on filtering semantics. Since L is
valid on standard ordering/premise semantics, this shows that filtering semantics gives rise to a
different logic. is is not the place to pursue a detailed study of the logic generated by the new
system. But let me point very quickly to the departure point from standard counterfactual logic.
For ease of reference, I will use the labels of one of the standard axiomatizations of counterfactual
logic, namely the one in Burgess 1981.

Given the semantics that I have developed in this paper, the element to reject is Burgess’s
axiom ():

() ((ϕ� χ) ∧ (ψ� χ)) ⊃ ((ϕ ∨ ψ)� χ)

Kraus et al. 1990 point out that (), together with some very basic assumptions, allows the
derivation of L. Hence it’s unsurprising that the axiom is invalid in the new semantics. To
see howfiltering semantics generates a counterexample to (), take again the prisoner scenario,
and consider the following three counterfactuals:

(25) If Billy was at the party, Charlie would be at the party.

(30) If Andy was at the party and Billy wasn’t at the party, Billy wouldn’t be at the party.

(31) If Andy was at the party or Billy was at the party, either Billy would be at the party or
Charlie wouldn’t be at the party.

(25) is true, given our choice of premises. (30), which is of the form ⌜(A ∧ ¬B) � ¬B⌝ is
true on any choice of premises on any plausible counterfactual semantics. (31), on the other
hand, comes out false on the premises given above. Given these assignments of truth value, we
can use simple inference rules to generate a counterexample to () (details are in a footnote).²⁹

²⁹In its current setup, the semantics validates the rule of substitution of provable equivalents mentioned just below
in the main text, as well as the following rule (I borrow the name from Fine 2012a):

( ) (ϕ� (ψ ∧ χ)) ⊃ (ϕ� χ)

By ( ) and the substitution rule used on the consequents of the conditionals we get, from (25) and
(30), respectively:
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I should flag that there is another option, though a more far-fetched on from the current
standpoint. is option involves restricting replacement of provable equivalents. e following
rule holds in Burgess’s system:

(RPE) From γ ↔ δ and β infer α, where α = ψ(δ) differs from β = ψ(γ) only by replacing
some subformulas of β of form γ by δ.

We might block the derivability of L by rejecting the validity of substitution of provable
equivalents in the antecedents of counterfactuals. (is route bears interesting similarities to
a recent proposal put forward by Kit Fine in the context of a very different framework; see his
2012a, 2012b.) But this would involve a greater departure from classical systems, and a switch
to a fully hyperintensional semantics.³⁰

7 Conclusion

e goal of this paper has been to show how causal-models-inspired ideas can be implemented
in a possible worlds semantics for counterfactuals. I have focused specifically on one aspect of
this implementation—namely, the algorithm for resolving inconsistency that is at work in causal
models. I have showed that implementing this algorithm yields a new kind of possible worlds
semantics, which, among other things, generates a new logic.

Let me close by mentioning two issues that I haven’t covered here. e first, which I briefly
hinted at in section 2.4, has to do with counterfactuals that track noncausal connections. e
current version of filtering semantics uses information about causal dependencies and indepen-
dencies. Hence it’s unclear how it would handle noncausal counterfactuals. One natural thought
is that structural equations models are general enough to capture all sorts of dependence rela-
tions. Some philosophers have put forward arguments to this effect: see, for example, Wilson
2013 and Schaffer 2015. Similarly, a premise semantics that exploits directional premises may
be used to model also noncausal dependence. Of course, the details of this implementation
remain to be worked out.

(i) b� (¬b ∨ c)

(ii) (a ∧ ¬b)� (¬b ∨ c)

Similarly, from (31) we can get, via substitution (in the antecedent, this time):
(iii) ((a ∧ ¬b) ∨ b)� (¬b ∨ c)

It’s easy to see that (i), (ii), and (iii) together are incompatible with an instance of () (just insert b for ϕ, (a ∧ ¬b)
for ψ, and (¬b ∨ c) for χ).

³⁰e point is connected to a further feature of the logic, namely the validation of the inference rule that Fine calls
‘simplification’:

ϕ ∨ ψ� χ

ϕ� χ, ψ� χ

Simplification is not validated by standard counterfactual logics. Yet it was pointed out early on in early responses
to Lewis (Fine 1975, Nute 1975), that it is an intuitively valid principle in natural language. Interestingly, filtering
semantics goes close to validating simplification: for a special case in which the inference holds, consider just the
example of a disjunctive antecedent in section 5. But it doesn’t quite do that. I develop a refinement of filtering
semantics that, among other things, rejects substitution of equivalents, in [reference omitted for blind review].
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e second issue has to do with so-called backtracking counterfactuals. With some approx-
imation, backtracking counterfactuals are counterfactuals that involve an epistemic inference
between the antecedent and the consequent. An example of a backtracker, with reference to the
prisoner scenario, would be:

(32) If the prisoner had died, one of the two riflemen (or both) would have shot.

(32) has a true reading (presumably in addition to a false one). Causal models, at least in their
basic version, are notoriously unable to capture this reading; similarly for the version of filtering
semantics that I have presented in this paper. Also in this case, there is a natural idea we can
appeal to: backtracking readings might be the ones where the point of intervention is shied
‘upstream’ (see Dehghani et al. 2012). In other words, the evaluation of counterfactuals works
still in the usual way—we remove contradiction-generating information from our stock. Only,
it is not information about dependencies that are immediately upstream from the antecedent,
but information about dependencies higher up. Also in this case, a proper implementationmust
wait for a different occasion.³¹

³¹[Acknowledgments suppressed for blind review.]
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