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Abstract

This paper develops an information sensitive theory of the semantics and prob-
ability of conditionals and statements involving epistemic modals. The theory
validates a number of principles linking probability and modality, including the
principle that the probability of a conditional If A, then C equals the probability of
C, updated with A. The theory avoids so-called triviality results, which are stan-
dardly taken to show that principles of this sort cannot be validated. To achieve
this, we deny that rational agents update their credences via conditionalization.
We offer a new rule of update, Hyperconditionalization, which agrees with Con-
ditionalization whenever nonmodal statements are at stake, but differs for modal
and conditional sentences.

1 Introduction

Our topic is the semantics and epistemology of epistemic discourse, which includes
indicative conditionals, like (1), and must- and might-claims, like (2) and (3)).

(1) If Frida danced, Maria danced.

(2) Frida must be dancing.

(3) Frida might be dancing.

The classical account of epistemic statements treats them as statements concerning
worlds related to actuality via an appropriate accessibility relation (see Kratzer 2012,
among others). Over the past decades, this account has come under attack from two
independent directions. One tradition is motivated by nonstandard logical features
of epistemic discourse, like the apparently inconsistency of might A and not A. Ac-
counts in this tradition develop an information-sensitive semantics, on which mean-
ings are characterized in terms of information states and update, rather than truth
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conditions.1 A second tradition is motivated by the interaction between conditionals
and probability. It is intuitive that one’s credence in a conditional If A, then C should
equal one’s conditional credence P r(C | A)—a principle commonly referred to as ‘Stal-
naker’s Thesis’. But a battery of triviality results show that Stalnaker’s Thesis cannot
be vindicated by a combination of classical truth-conditional semantics and classical
Bayesian theories of credence. In light of this, theorists have developed non-truth-
conditional accounts of conditionals aimed at vindicating probabilistic judgments.2

These two traditions have had little contact so far. This paper shows that they can
and should be linked. We give an information-sensitive semantics and probability
theory for epistemic discourse that not only captures informational inferences, but
also vindicates a number of principles linking modality and probability. The seman-
tics is a minimal variant of so-called path semantics, developed and defended in San-
torio 2018, 2019b. This semantics is conservative with regard to existing accounts:
it merely introduces extra structure on the well-known framework of information-
sensitive semantics for epistemic modality. As a result, it integrates smoothly with
current semantic theories, both compositionally and in terms of the resulting logic.
We show that this semantics can be combined with a theory of probability and update
that vindicates several intuitive bridge principles between modality and probability.
In particular, using ‘P rA(B)’ to denote the probability of B, updated on A, we vindicate
the following:

Update Thesis. For all rational P r and all A, B:

P r(A→ B) = P rA(B)

In addition, we also vindicate a restricted version of Stalnaker’s Thesis:

Stalnaker’s Thesis−. For all rational P r : P r(A) > 0 and all descriptive A, B:

P r(A→ B) = P r(B | A)

To achieve these goals, we develop a new theory of how rational agents update
their credences over time. One of the lessons of triviality is that rational update of
credences cannot be modeled, as Bayesians standardly do, via the rule of condition-
alization. In place of conditionalization, we develop a new update rule, which we
call ‘Hyperconditionalization’. Hyperconditionalization agrees with conditionaliza-
tion for ordinary sentences, but differs for epistemic sentences.

1There are several different kinds of information sensitive frameworks. For representative work
within update semantics, see Veltman 1996, Groenendijk et al. 1996, Beaver 2001, Gillies 2004, and
Willer 2013. For other information sensitive accounts, see Yalcin 2007, Swanson 2011, Klinedinst and
Rothschild 2012, Swanson 2012, Moss 2015, Yalcin 2015, Ninan 2016, Mandelkern 2019, and Goldstein
2020. For useful overviews of the literature, see von Fintel and Gillies 2007 and Willer 2015.

2The first triviality result was presented in Lewis 1976; see also, among many, Hájek and Hall 1994,
Bradley 2000, 2007, Charlow 2015, Goldstein 2017. As for no truth value accounts: the foundational
text for all accounts in this tradition is Adams 1975; see also Edgington 1995. See van Fraassen 1976,
Kaufmann 2009, 2015, Bacon 2015 for accounts that try to vindicate the Thesis.
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Our results build on existing literature, and in particular on an influential line
of thinking about conditionals and probability that traces back to van Fraassen 1976
and includes important work by Stefan Kaufmann (2009, 2015) and Richard Bradley
(2000; 2007; 2012), among others. But our contribution is unique in a number of
ways. (i) We offer a new diagnosis of triviality: conditionalization produces the wrong
results when modal statements are involved. This diagnosis is backed by extensive
theoretical and empirical arguments, in §3. (ii) Our semantics is compositionally
integrated with existing systems for modals and conditionals. Our semantics is a
refinement of standard information sensitive semantics. (iii) Existing accounts vin-
dicate Stalnaker’s Thesis at the price of a strong form of contextualism: the proposi-
tion expressed by a conditional changes whenever the epistemic state of the speaker
changes. Conversely, our account doesn’t rely on contextualism. One by-product of
this is that, differently from proponents of contextualism, our version of Stalnaker’s
Thesis is robust under update: by rationally updating an epistemic state that vindi-
cates the equivalence of P r(A→ B) and P r(B | A), we reach an epistemic state where
the equivalence still holds (keeping the interpretation of the conditional unchanged).3

The paper is organized as follows. §§2–3 introduce triviality results and propose
our diagnosis. §4 introduces our semantics. §5 presents an informal overview of our
theory of probability. §6 develops this theory in detail, and §7 shows how update
works. §8 addresses some further issues. §9 explores the extent to which our the-
ory validates various strengthenings of Stalnaker’s Thesis. The technical results are
proved in appendices to the main body of the paper.

Before starting, a piece of terminology: throughout the paper, we say that a sen-
tence is descriptive if it doesn’t contain an epistemic modal or conditional.

2 Triviality

2.1 The issue of probabilities of conditionals

The philosophical literature on triviality begins with Stalnaker’s Thesis (see Stalnaker
1970). Stalnaker’s Thesis is the claim that, for all indicative conditionals A→ C, the
probability of A→ C equals the conditional probability P r(B | A).

Stalnaker’s Thesis (ST). For all rational P r : P r(A) > 0 and all A, B:

P r(A→ B) = P r(B | A)

There are many reasons to embrace ST. A first, simple argument is empirical. Ordi-
nary judgments about probabilities of conditionals appear to align with it.4 Suppose
Maria might have tossed a fair die, and assess the probability of (4):

3See Norlin 2020; Norlin 2021 for recent work exploring the epistemological consequences of McGee
1985’s semantics in a qualitative settings, which has some similar morals to our own.

4Though there are alleged local counterexamples to Stalnaker’s Thesis; see Kaufmann 2004 for dis-
cussion.

3



(4) If Maria tossed the die, it landed on 1 or 2.

The natural answer is ‘1/3’, which is also the conditional probability of the conse-
quent, given the antecedent. These intuitions are confirmed by experimental evidence
about probabilistic judgments about conditionals (see e.g. Evans and Over 2004, Cre-
mers et al. 2017.)

A second, more general argument for ST links conditionals in natural language
with the attitude of supposition. It is natural to think that evaluating a conditional
(for either truth or probability) is equivalent to supposing the antecedent, and evaluat-
ing the consequent under that supposition. For example, assessing the probability of
(4) appears to be equivalent to assessing the probability of the die landing 1 or 2, un-
der the supposition that Maria did indeed toss the die. If, following standard Bayesian
assumptions, we construe probabilities under supposition as conditional probabili-
ties, we obtain ST.

The suppositional approach has a long pedigree in philosophy. Its central idea
can be discerned in Ramsey 1926, and is developed formally and philosophically in
Ernest Adams’s important work. (see Adams 1975, as well as Adams 1998).5 Among
other things, the core idea of the suppositional approach promises to bridge in an in-
teresting way semantics and epistemology. On the suppositional view, the semantic
operation performed by if -clauses is an object language implementation of the oper-
ation of update of an epistemic state. Hence, if the suppositional theory is correct,
there are interesting links between the semantics of natural language and a theory of
supposition and update.

Unfortunately, ST has proven hard to vindicate. Starting with Lewis 1976, theo-
rists have produced a vast array of “triviality” results showing that ST, in combination
with seemingly safe assumptions about probability and conditionals, leads to unac-
ceptable consequences. (Besides the original result in Lewis 1976, see Hájek and Hall
1994, Bradley 2000, 2007 among many.) In the remainder of this section, we present
a simple triviality result for conditionals.

2.2 Triviality for conditionals

We start by outlining some basic assumptions. As we point out in §3, these assump-
tions are shared by a series of triviality results that go beyond conditionals.6 Where
P rA is the result of rationally updating credence function P r on A (whatever the ratio-
nal update procedure is):

5See, among others, Edgington 1995, Williams 2010 for more recent discussion.
6The characterization of these assumptions follows, in part Santorio and Williams.
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triviality quintet

Identity. For all P r and all consistent A,
P rA(A) = 1

Conjunction. For all rational P r, and for all A and B:
P r(A∧B) ≤ P r(A)

Ratio. For all A and B: P r(B | A) = P r(A ∧
B)/P r(A)

Conditionalization. For all rational P r and all A:
P rA(•) = P r(• | A)

Closure. If P r is rational, then P rA(•) is rational,
for any A such that P r(A) > 0.

Identity says that after updating on A, a subject should be certain of A. Conjunction
says that the probability of a conjunction should be the lower bound of the proba-
bility of the conjuncts. Ratio defines conditional probabilities by the usual ratio of
unconditional probabilities. Closure states that if we start from a rational credence
distribution and update rationally on any claim, we reach a rational credence distri-
bution. Finally, Conditionalization identifies the probabilities we reach via rational
update (what we call updated probabilities) with conditional probabilities as defined
by the ratio formula.

The triviality result we prove is a variant of a triviality result put forward by
Bradley (2000, 2007). First, we observe that, given minimal principles ST, entails
the following principle:7

Positive Preservation (PP).
For all rational P r, and for all descriptive A, B such that P r(A) > 0:
If P r(B) = 1, then P r(A→ B) = 1

Positive Preservation also appears plausible on empirical grounds. If you have full
credence that the die landed on 1 or 2, then you should also have full credence that, if
Maria was the one to toss it, it landed on 1 or 2.

Now, given Ratio, Closure, and Conjunction, we can use Positive Preservation to
prove that P r(A→ B) ≥ P r(B), on the assumption that P r(A) > 0.

i. P r(A→ B) ≥ P r((A→ B)∧B) (Conjunction)

ii. P r(A→ B) ≥ P r(B)× P r(A→ B | B) (i, Ratio)

iii. P r(A→ B) ≥ P r(B)× P rB(A→ B) (ii, Conditionalization)

iv. P rB(B) = 1 (Identity)

7Given Ratio, and given the classical Bayesian assumption that P r(A∧B) = P r(B) when P r(B) = 1, we
have: if P r(B) = 1, then we have P r(B | A) = 1. Positive Preservation immediately follows from here,
given ST.
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v. P rB(A→ B) = 1 (iv, PP, Closure)

vi. P r(A→ B) ≥ P r(B)× 1 = P r(B) (iii, v)

But this result is very implausible. Suppose that Maria tossed a fair die, and consider:

(5) The die landed on a prime.

(6) If the die landed on an even number, it landed on a prime.

Intuition suggests that P r(5) = 1/2 (since 2, 3, and 5 are prime) and P r(6) = 1/3. But
the proof appears to establish that this is an irrational credal assignment, since it
implies P r(6) ≥ P r(5).

This concludes our quick review of triviality for conditionals. Let us now turn to
sketching our strategy for solving the problem.

3 Three notions of suppositional probability

This paper puts forward a theory of conditionals, probability, and update that vin-
dicates the link between conditionals and probability outlined in §2, while avoiding
triviality. The theory has a formal component, but the key idea can be stated and
motivated informally. This section is dedicated to this task.

It’s helpful to put on the table three notions, all of which have some claim to being
(or being related to) a concept of ‘suppositional probability’.

P r(A→ C) probability of a conditional A > C
P rA(C) probability of C, updated on A
P r(C | A) conditional probability of C, given A

The debate on probabilities of conditionals has focused on the viability of Stalnaker’s
Thesis, repeated below. Stalnaker’s Thesis states the equivalence of the first and the
third of these notions.

Stalnaker’s Thesis (ST). For any A and B such that P r(A) > 0:

P r(A→ B) = P r(B | A)

Throughout the debate, the notion of conditional probability has been invariably
construed along classical Bayesian lines. This construal involves two elements. First,
conditional probabilities are taken to conform to the ratio formula. I.e., as Ratio in
§2 stated, P r(B | A) is identified with the quotient P r(A∧ B)/P r(A) (at least whenever
P r(A) > 0).8 Second, conditional probabilities so understood play an important role in
update. In particular, the probability of B after learning A, i.e. P rA(B) is supposed to
equal just the conditional probability P r(B | A).

8This holds both if we take the ratio formula to provide a definition of conditional probability, and
if we take conditional probabilities as primitive and assume that the ratio formula specifies a necessary
equivalence that holds whenever the ratio of P r(A∧B)/P r(A) is defined (as recommended by Hájek 2003).

6



Conditionalization. For all rational P r and all descriptive A, B:

P rA(B) = P r(B | A)

The combination of Stalnaker’s Thesis and Conditionalization yields that all
three notions related to the idea of suppositional probability coincide.

P r(A→ B) = P rA(B) = P r(B | A)

As we pointed out in §2, an account that manages to vindicate the equivalence of
these three notions is something like a theorist’s dream. Unfortunately, the lesson of
triviality result is just that these equivalences cannot all be vindicated—at least not
without qualification.

The standard response, starting from Lewis 1976, has been to preserve the classical
identification of conditional probabilities and updated probabilities, and to deny that
the latter two equal probabilities of conditionals.

P r(A→ B) , P rA(B) = P r(B | A)

This is a mistake. The right response is to hold on to the identification of probabilities
of conditionals with updated probabilities, while denying that, in general, the latter
two are properly captured by conditional probabilities as defined by the ratio formula.

P r(A→ B) = P rA(B) , P r(B | A)

Since we reject that conditional probabilities, as classically construed, equal either
probabilities of conditionals or updated probabilities, on our view both Stalnaker’s
Thesis and Conditionalization, in their unrestricted form, fail. Conversely, we vin-
dicate the following:

Update Thesis. For all rational P r and all A, B:

P r(A→ B) = P rA(B)

The Update Thesis says that the probability of any conditional A→ C equals the prob-
ability of the consequent C, updated on the antecedent A. The Update Thesis is sig-
nificant from a theoretical point of view. Via the Update Thesis, we can vindicate the
idea that conditionals are object language devices for representing rational update via
supposition.

At the same time, we don’t reject the link between conditional probabilities and
the other two notions of suppositional probability altogether. Our departure from the
orthodoxy is restricted to special cases. Updated probabilities differ from conditional
probabilities only for sentences that involve modal and conditional operators. But
P rA(B) and P r(A > B) equal P r(B | A) whenever descriptive sentences—i.e., sentences
that don’t involve modal or conditional contents—are involved. As a result, our theory
will also vindicate restricted versions of Stalnaker’s Thesis and Conditionalization.
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Stalnaker’s Thesis−. For all rational P r : P r(A) > 0 and all descriptive A, B:

P r(A→ B) = P r(B | A)

Conditionalization−. For all rational P r and all descriptive A, B:

P rA(B) = P r(B | A)

Hence, on our view, standard Bayesian tenets apply to the nonmodal and noncon-
ditional fragment of our language. Given that, on our view, modal and conditional
sentences do not express standard propositions and have a nonclassical logic, it is
unsurprising that classical Bayesian tenets fail. A nonclassical semantics and logic
requires a nonclassical theory of update.

Even with this qualification, one might worry that rejecting Conditionalization is
the wrong reaction to triviality. In the rest of this section, we give two arguments to
support our move: (i) triviality concerns not just conditonals, but a wide variety of
expressions in language; (ii) there are straightforward counterexamples to the unre-
stricted versions of Conditionalization and Stalnaker’s Thesis.

3.1 Argument #1: the generality of triviality

The problem of triviality was initially raised for Stalnaker’s Thesis. But subsequent
literature has shown that the focus on conditionals is misplaced: triviality is a prob-
lem affecting the connection between probability and epistemic modality in general.9

On the one hand, we can derive triviality for conditionals without appealing to ST,
but rather building on less controversial principles. On the other hand, triviality re-
sults can be derived also for modal statements that don’t involve conditionals. Hence
merely rejecting ST is insufficient to solve the problem.

In the rest of this section, we show how we can derive triviality results for necessity
and possibility modals, using the same assumptions we used in §2:

9In fact, triviality arguably extends beyond epistemic modality. See Santorio and Williams for a triv-
iality result concerning determinacy operators, and Williams 2012, a.o., for triviality results concerning
counterfactuals.

8



triviality quintet

Identity. For all P r and all consistent A,
P rA(A) = 1

Conjunction. For all rational P r, and for all A and B:
P r(A∧B) ≤ P r(A)

Ratio. For all A and B: P r(B | A) = P r(A ∧
B)/P r(A)

Conditionalization. For all rational P r and all A:
P rA(•) = P r(• | A)

Closure. If P r is rational, then P rA(•) is rational,
for any A such that P r(A) > 0.

The results of this section build on existing work, though our way of presenting and
organizing the material is new.10

Necessity modals. We start with epistemic must, which we represent as ‘�’. Rather
than PP, we assume:

Must Preservation (MP). For all rational P r and all A: If P r(A) = 1, then
P r(�A) = 1

The empirical case for Must preservation mirrors the empirical case for an analogous
principle in the logic of epistemic modality. Veltman 1985 and Yalcin 2007 argue that
the following is a semantically valid argument:

(7) a. The house is empty.
b. Therefore, the house must be empty.

(7) is an instance of what has become known as ‘Lukasiewicz’s principle’.

(8) Lukasiewicz’s Principle. A |= �A

Here we remain neutral about the validity of Łukasiewicz’s Principle. What matters to
us is that the inference from (7-a) to (7-b) is certainty-preserving: if someone is certain
that the house is empty, then they should also be certain that the house must be empty.

Now, assume MP and the principles in triviality quintet. The proof is analogous
to the one for conditionals:

i. P r(�A) ≥ P r(�A∧A) (Conjunction)

ii. P r(�A) ≥ P r(�A | A)× P r(A) (i, Ratio)

10For results about necessity and possibility modals, see, among others, Schulz 2010, Charlow 2015,
Russell and Hawthorne 2016, Beddor and Goldstein 2018, and Santorio 2019a.
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iii. P r(�A) ≥ P rA(�A)× P r(A) (iii, Conditionalization)

iv. P rA(A) = 1 (Identity)

v. P rA(�A) = 1 (iv, MP, Closure)

vi. P r(�A) ≥ 1× P r(A) = P r(A) (iii, v)

The proof establishes that P r(�A) ≥ P r(A), i.e. that one’s credence in must A is an up-
per bound for one’s credence in A. But this seems absurd. Clearly one can have high
credence in A, while having zero or near-zero credence in must A. To see this, consider
a case discussed by Beddor and Goldstein 2018. Suppose Ari the burglar has been
casing a house for hours. As far as she can tell, not a mouse is stirring. Consequently,
Ari has high credence that the house is empty. Still, Ari, being an experienced bur-
glar, grants that there is some possibility that an inconspicuous resident is inside. So
she has low credence that the house must be empty. This combination of credences
appears to be rational, contrary to the proof we just ran.

Possibility modals. For possibility modals like might, we also start from a specific
principle about credences in might-claims. Where Ā denotes the negation of A:

Might Contradiction (MC). Where P r is a rational probability function:
If P r(Ā) = 1, then P r(^A) = 0.

Might Contradiction follows from Must Preservation given two orthodox assump-
tions: (i) if P r(A) = 1, P r(Ā) = 0; (ii) must and might are duals, i.e. �A =def ¬^¬A.

There are intuitions backing MC. For an example: after an utterance of (9-a) is
accepted, even asking the relevant might-claim, as in (9-b), seems out of place.

(9) a. A: It’s not raining
b. B: # Might it be raining?

In addition to MC, we need to strengthen one of the principles in triviality quin-

tet. Rather than Conjunction, we assume Total probability:

Total probability. For all A and B, P r(A) = P r(A∧B) + P r(A∧¬B)

In addition, we make use of two assumptions that seem uncontroversial: (i) A entails
^A; (ii) if A entails B, P rA(B) = 1. We refer to the conjunction of these two assumptions
below as Entailment.

With these principles in place, here is the triviality proof:

i. P r(♦A) = P r(♦A∧A) + P r(♦A∧ Ā) (Total Probability)

ii. P r(♦A) = P r(♦A | A)× P r(A) + P r(♦A | Ā)× P r(Ā) (i, Ratio)

iii. P r(♦A) = P rA(♦A)× P r(A) + P rĀ(♦A)× P r(Ā) (ii, Def of P rA)

iv. P rA(A) = 1 (Identity)

v. P rA(♦A) = 1 and P rĀ(♦A) = 0 (iv, Entailment, MC, Closure)
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vi. P r(♦A) = 1× P r(A) + 0× P r(Ā) (iii, v)

vii. P r(♦A) = P r(A) (vi)

This result is, again, absurd. Suppose that a fair coin was flipped and I am fully
ignorant about the outcome. I will have high credence in the claim that the coin might
have landed heads, but only .5 credence in the claim that the coin landed heads. Yet
this simple combination of attitudes is ruled out by our result.

To summarize: the assumptions in triviality quintet can be used, in combina-
tion with various principles about modals and conditionals, to generate a battery of
triviality results for all sentences involving epistemic modalities.

It’s natural to think that the way to block all these results is to reject one of these
assumptions. But, once we take this path, Conditionalization is the only reasonable
choice. Identity and Conjunction seem too basic to question. Within our setup, Ra-
tio is simply a definition: it defines conditional probabilities as ratio probabilities.11

Similarly, Closure merely establishes that, by starting from a rational probability dis-
tribution and by performing rational update—whatever procedure rational update
consists in—we reach another rational probability distribution. This much seems
hard to give up. Conversely, Conditionalization makes a substantial claim: ratio-
nally updated probabilities are conditional probabilities, as they are defined by the
ratio formula. This is this claim that we reject.

One might worry that, by rejecting Conditionalization, we are changing the sub-
ject from classical discussions of the conditionals-probability link. The notion of con-
ditional probability, the thought goes, is crucially linked to the notion of update; the
main theoretical role of conditional probabilities is just to be used in update. So, by
changing the notion of update, we appear to be changing the notion of conditional
probability as well. The response is that our notion of updated probability is gen-
uinely linked to the classical notion of conditional probability. As we pointed out,
we vindicate the restricted principle Conditionalization−: updated probabilities are
identical to conditional probabilities whenever modals and conditionals are not in-
volved. So we are not swapping the standard concept of conditional probabilities for
another one. We are simply amending it to cover cases that were never in its originally
intended coverage.

3.2 Argument #2: failures of ST and Conditionalization

Our second argument is that there is empirical evidence that the unrestricted versions
of Conditionalization and Stalnaker’s Thesis fail when sentences involving condi-
tionals and modals are involved. Moreover, these failures appear to be connected,

11An influential line of thinking about conditional probability (see e.g. Hájek 2003) rejects the idea
that conditional probabilities should be defined via Ratio, and instead treat Ratio as a necessary truth
that holds whenever the quotient of P r(A∧B)/P r(A) is defined. On this construal, Ratio is the assumption
that fails on our theory. This doesn’t make a difference for out key claim: updated probabilities fail to
be equal to conditional probabilities, understood as conforming to the ratio formula, when modals and
conditionals are involved.
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since they happen in the same scenarios. These failures have gone unnoticed so far, so
we discuss them in detail here.

Failure of Stalnaker’s Thesis. Consider the following scenario:

Die. Sarah tossed a fair, six-sided die; we have no information about the
outcome.

Notice first that (10) should get probability 1, or near-1.12

(10) If the die landed even, then if it didn’t land on two or four, it landed on six.

Let’s now consider the conditional probability of the consequent given the an-
tecedent of (10). Notice first that (11) and (12) should get, respectively, probability
1/4 (assuming Stalnaker’s Thesis) and 1/2.

(11) If the die did not land on two or four, it landed on six.

(12) The die landed even.

Notice also that (12) is equivalent to the material conditional corresponding to (11).
Hence, given the widely accepted assumption that indicative conditionals entail the
corresponding material conditionals13, (11) entails (12). As a result, the conditional
probability of (11) given (12) is the following:

P r(¬(2or4) > 6 | even) =
P r(¬(2 or 4) > 6∧ even)

P r(even)
=
P r(¬(2 or 4) > 6)

P r(even)
=

1/4
1/2

=
1
2

So we have:

1 = P r(even > (¬(2 or 4) > 6)) , P r(¬(2 or 4) > 6 | even) =
1
2

This is a counterexample to the unrestricted version of Stalnaker’s Thesis.

Failure of Conditionalization. The same scenario that we used to produce a coun-
terexample to Stalnaker’s Thesis can be used to produce a counterexample to unre-
stricted Conditionalization. This supports our point that the two theses are related,
and that they should be rejected together. Let us focus now just on (11) and (12),
repeated below:

(11) If the die did not land on two or four, it landed on six.

(12) The die landed even.

12Depending on whether you are fine with assigning contingent propositions probability 1; for discus-
sion, see, among many, Easwaran 2014.

13This principle is vindicated by the so-called Weak Centering principle: A > C � A ⊃ C. There is
evidence that Weak Centering doesn’t hold in general (see among many McGee 1985, Khoo 2013), but it
is uncontroversial for simple conditionals like (11).
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As we saw, in the situation described one should assign, respectively, probability 1/4
and 1/2 to (11) and (12).

Suppose now that we learn (12) with certainty. What probability should we assign
to (11), in the updated belief state? The natural answer is ‘1’, or ‘near-1’. Once we
are certain that the die landed even, we should also take the conditional in (11) to be
certain.

The relevant probabilities before and after the learning event are specified in this
table:

before update with ‘even’ after update with ‘even’
even 1/2 1
if not (two or four), six 1/4 1

Now, these probabilities are incompatible with the claim that learning takes place via
Conditionalization. The following condition is a basic feature of conditional proba-
bilities:

For any A, B: if P r(A) < P r(B), then P r(A | B) < 1.

In fact, given the assumption that (11) entails (12), we obtain, via a calculation analo-
gous to the one above, that our degree of belief in the conditional, conditional on the
claim that the die landed even, should be exactly 1/2.

Hence the probability of (11), updated on (12), is different from the conditional
probability of (11), given (12).

1 = P reven(¬ (2 or 4)>6)) , P r(¬ (2 or 4)>6 | even) =
1
2

This is a counterexample to the unrestricted version of Conditionalization.

3.3 Noncontextualism

Before stating our account, it’s useful to contrast it with a different strategy for tack-
ling triviality. Several writers (see e.g. van Fraassen 1976; Kaufmann 2009; Bacon
2015) appeal to a contextualist semantics to block triviality. The key idea is that con-
ditionals express a different proposition when evaluated with respect to different epis-
temic states. This is particularly relevant when conditionals appear as arguments of
probability functions that represent credences, since a change in credence distribu-
tion corresponds to a change in epistemic states. As a result, triviality proofs of the
kind that we have presented in §2 suffer from systematic equivocation. The sentence
‘A→ C’ expresses different proposition in P r(A→ C) and in P r(A→ C | C).

The contextualist strategy, appropriately supplemented with a package of seman-
tics and probability theory that assigns probabilities to conditionals, provides a re-
sponse to triviality. Moreover, the strategy can be easily generalized to epistemic
modals, thus providing a general solution to the family of triviality results reviewed
in §2.

13



Despite these advantages, we don’t pursue a contextualist solution. The reason is
that we the kidn of contextualism needed to block triviality is implausible, and that
an alternative noncontextualist solution is available.

In this paper, we don’t have the space to offer a detailed critique of contextualism,
but let us gesture towards a point of disagreement. Consider again the die scenario,
and in particular (11):

(11) If the die did not land on two or four, it landed on six.

According to the contextualist, the conditional in (11) expresses different propositions
before and after you learn that the die landed even. Before the learning event, it de-
scribes an epistemic state in which all outcomes for the die toss are open possibilities.
After the learning event, it describes an epistemic states where only even numbers are
open possibilities. More in general, (11) will express a different proposition whenever
the speaker’s epistemic state changes.

This extreme kind of context dependence, which appears to be by and large invis-
ible to speakers14, is not well-motivated. It is also not necessary. This paper shows
how we can get a theory of the probabilities of epistemic modality and conditionals
that avoids this kind of extreme contextualism.

To highlight our disagreement with the contextualist, let us close by pointing to
a principle that we vindicate and that fails on contextualist accounts. On our view,
the restricted version of Stalnaker’s Thesis is robust under updating. If a subject’s ini-
tial probability distribution vindicates Stalnaker’s Thesis−, and if they update ratio-
nally, they reach a probability distribution that also vindicates Stalnaker’s Thesis−—
holding constant the content assigned to the conditional.

Robust Stalnaker (RS). For all rational P r, all descriptive A, B, and all C:

P rC(A→ B) = P rC(B | A)

Notice that RS is validated in the die scenario. Before the learning event, the intu-
itively correct degree of rational credence in (11) is 1/4, which corresponds to the
conditional probability of even, given ¬(2 or 4). After the learning event, the intu-
itive rational credence for (11) is 1, which corresponds to the updated conditional
probability.

14Why is it invisible to speakers? Suppose that Alice and Bob, who have different epistemic state,
disagree on what credence one should assign to the proposition they each express via (i).

(i) If it’s raining in Melbourne, it’s raining in Sydney too.

According to the contextualist, Alice and Bob are talking past each other, since they express different
propositions. For an analogy, consider a case where Alice and Bob disagree about what credence to
assign to the proposition they each express by (ii)—when they consider (ii) at different places/times.

(ii) It is raining.

Clearly, in this second case Alice and Bob’s disagreement is the result of a misunderstanding. But the
case of the disagreement about (i) seems very different.
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Conversely, contextualist accounts do not vindicate RS. For example, for the con-
textualist, the proposition originally expressed by (11) receives probability 1/2 after
update. To our knowledge, RS is not vindicated by any existing account of condition-
als and probability. Yet it is a natural desideratum, and one that seems obvious from
a naïve look at the evidence.

3.4 The plan

The project of this paper is to develop a theory of conditionals, probability, and update
that vindicates three main claims:

i. the Update Thesis;

ii. the restricted verson of Stalnaker’s Thesis, i.e. Stalnaker’s Thesis−;

iii. the thesis that (ii) is robust under update, i.e. Robust Stalnaker.

Notice that, via (i) and (ii), it immediately follows that our theory also vindicates
Conditionalization−. Via the Update Thesis, P r(A→ B) = P rB(A), for all A and B. Via
Stalnaker’s Thesis−, P r(A→ B) = P r(B | A), for all descriptive A and B. It follows that
P rA(B) = P r(B | A), for all descriptive A and B.

In addition, the resulting theory will also vindicate the principles about credences
in epistemic modal claims mentioned in this section. Hence we are going to give a
general theory of the links between probability and epistemic modal language, that
vindicates all the main intuitive bridge principles discussed so far.

4 Path semantics

Santorio 2019b develops an information sensitive semantics for modals and condi-
tionals called ‘path semantics’. We are going to adopt path semantics, and define
notions of probability and update based on it.

We choose path semantics for three reasons. First, path semantics is an informa-
tional semantics, in the sense that it vindicates inferences that are typical of informa-
tional systems in the style of Veltman 1996 and Yalcin 2007. This will help us capture
several of the principles in §3.

Second, path semantics, differently from all other informational semantics, vindi-
cates Conditional Excluded Middle:

(13) Conditional Excluded Middle (CEM). |= A→ B∨A→¬B

CEM is related to Stalnaker’s Thesis, and so validating the former is a step towards
validating the latter.15

15Suppose CEM is invalid. Then an agent can assign a credence of less than 1 to A→ B∨A→¬B. But
Stalnaker’s Thesis implies that P r(A→ B∨A→¬B) ≥ P r(A→ B) +P r(A→¬B) = P r(B | A) +P r(¬B | A) = 1.
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Finally, path semantics is a compositional semantics for natural language. In par-
ticular, it handles together modalized and conditional statements. This gives it an
advantage other semantics that have been proposed to vindicate Stalnaker’s Thesis,
and which focus exclusively on the conditional case.16

In an informational semantics, modal sentences like �A or ^A quantify over pos-
sible worlds in an information state. The central idea behind path semantics is that,
differently from modal sentences, conditionals don’t quantify over possible worlds.
Rather, conditionals are selectional: they select a single world to use as the world of
evaluation for the consequent.17 The selectional idea is implemented in informational
semantics by considering sequences of worlds that include all and only the worlds in
an informational state. These sequences are what we call paths.

Paths resemble orderings that are familiar from standard truth-conditional seman-
tics for conditionals—in particular, they are reminiscent of the total orderings that
one can extract from Stalnaker’s (1968) semantics. But paths are not meant to cap-
ture a notion of similarity and the context does not fix a ‘path of evaluation’. Paths
are theory-internal devices; actual utterances of conditionals are evaluated at infor-
mation states. (Accordingly, intuitions about ‘probabilities of conditionals’ always
refer to probabilities of conditionals at an information state, even though paths will
be useful in calculating the latter.)

Formally, a path is a sequence of worlds without repetitions. Paths are related
to information states: an information state fixes a set of paths. For a toy example,
consider an information state i that involves three worlds:

i : {w1,w2,w3}

This information state fixes six paths:

〈w1, w2, w3〉
〈w1, w3, w2〉
〈w2, w3, w1〉
〈w2, w1, w3〉
〈w3, w1, w2〉
〈w3, w2, w1〉

While truth at a path is the main compositional notion, the system also includes a
notion of support of a sentence at an information state. A sentence is supported at an
information state just in case it is true at all paths generated by that state.

Let us turn to stating the system more precisely. It’s helpful to introduce two
relations on paths. First, p′ is a subsequence of p (p′ ≤ p) just in case every world in p′

16We have in mind in particular the theories that develop the initial idea in van Fraassen 1976; these
include Bradley 2012, Kaufmann 2009, Bacon 2015. See also McGee 1989 and Jeffrey and Stalnaker 1994
for theories that involve related ideas.

17This idea builds on the semantics in Stalnaker 1968, 1981, 1984; see also Schein 2003, Schlenker
2004 for recent attempts in a similar vein.
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is in p, and the worlds in p′ appear in the same order as in p. For example, 〈w1,w3,w4〉
is a subsequence of 〈w1,w2,w3,w4〉. Second, p′ is a permutation of p (p′ ∗p) just in case
p′ and p contain the exact same worlds, in a possibly different order. For example,
〈w2,w1,w4,w3〉 is a permutation of 〈w1,w2,w3,w4〉.

Finally, we introduce a notion of the update of a path p with a sentence A (p +A),
as the largest subsequence of p that makes A true throughout every permutation. For
example, where A is true at w2 and w4 uniquely, 〈w1,w2,w3,w4〉+A = 〈w2,w4〉.

Definition 1.

1. A path p is a sequence of worlds without replacement. A world w assigns a truth
value w(p) to every atomic sentence.

2. pi is the i-th member of p.

3. An interpretation function ~·� assigns every sentence a set of paths.

4. p′ ≤ p (p′ is a subsequence of p) iff whenever w occurs earlier in p′ than v, w occurs
earlier in p than v.

5. p′ ∗ p (p′ is a permutation of p) iff p and p′ consist of the same worlds, ordered
potentially differently.

6. p+A (the update of p with A) is the largest member of the following set:
{p′ ≤ p | ∀p′′ if p′′ ∗ p′ then p′′ ∈ ~A�}

In path semantics, an atom is true at a path just in case it is true at the first world in
the path. The connectives are given the usual Boolean interpretation. The conditional
is true at a path just in case the consequent is true at the result of updating the path
with the antecedent. Finally, epistemic possibility and necessity modals existentially
and universally quantify over permutations of paths.

Definition 2.

1. ~p�p = 1 iff p1(p) = 1

2. ~¬A�p = 1 iff ~A�p = 0

3. ~A∧B�p = 1 iff ~A�p = 1 and ~B�p = 1

4. ~A→ B�p = 1 iff ~B�p+A = 1

5. ~♦A�p = 1 iff ∃p′ ∗ p : ~A�p
′
= 1

6. ~�A�p = 1 iff ∀p′ ∗ p : ~A�p
′
= 1

We define a notion of support at an information state. We also define two notions
of consequence: one involves preservation of truth at a path, the other preservation of
support.
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Definition 3.

1. p supports A (p |= A) iff ∀p′ ∗ p : ~A�p
′
= 1

2. A1, . . . ,An truth conditionally entails B (A1, . . . ,An c B) iff ~B�p = 1 whenever ~Ai�
p =

1 for every i ∈ [1,n].

3. A1, . . . ,An informationally entails B (A1, . . . ,An i
B) iff p |= B whenever p |= Ai for

every i ∈ [1,n].

For a simple illustration, consider the path in (14).

(14) 〈w1,w2,w3〉

Let these worlds model the outcome of a fair die, where wi is a world in which the die
lands i. Then the following sentences are true at (14):

(15) a. The die landed on 1.
b. The die landed on 1 or 3.
c. The die must not have landed on 5 or 6.
d. The die might have landed on 2.
e. If the die didn’t land on 1, it landed on 2.

Let us also go through some examples of path updating. On our definition, the update
of a path p with A is the largest subsequence of p such that all its permutations make
A true. For reference, consider again a case where a die was tossed, and suppose that
we are updating the following path:

p: 〈w1,w2,w3,w4,w5,w6〉

Here is how the update of this path works out in particular cases.

i. For any descriptive A, the update of any path p with A is just the subsequence of p
consisting of A-worlds. For an example, let A be (16); p + (16) is in (17).

(16) The die landed on an odd number.

(17) p + (16): 〈w1,w3,w5〉

ii. Updating with �A has identical effects to updating with A (despite the differences
in meaning between the two). Hence p + (18) is again the subsequence of p that
includes all and only the odd worlds.

(18) The die must have landed on an odd number.

(17) p + (18): 〈w1,w3,w5〉

iii. Updating with A > C has identical effects to updating with the material conditional
A ⊃ C. So e.g. the update of p with (19) is in (17)
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(19) If the die didn’t land on two, it landed odd.

(17) p + (19): 〈w1,w2,w3,w5〉

Before moving on, let us notice one feature of the semantics that will have conse-
quences for a theory of probability. The notion of path update requires that, for every
sentence A and for every path p, there is a unique largest subpath of p that makes A
true. This condition is not met by some complex sentences. For example, sticking to
the die scenario, consider (20):

(20) The die must have landed on two, or the die must have landed on an odd
number.

If we update p with the first disjunct, we obtain 〈w2〉, and if we update p with the
second disjunct, we obtain 〈w1,w3,w5〉. But there is no single largest subpath of p that
makes true (20).

Santorio notices this problem, and builds a homogeneity requirement in the se-
mantics of conditionals. Roughly: we admit that a sentence A can induce multiple
largest updates of a path, and A > C is defined at p just in case C has the same truth
value relative to all largest updates of p with A. We explain later on how this impacts
the assignment of probabilities to conditionals.

This concludes our overview of path semantics. We now explain how probability
and update can be defined for this semantics. We first give an overview in §5, and
then introduce the details in later sections.

5 Overview of the proposal

In the next sections, we start from path semantics and develop a theory of probability
and update that vindicates the Update Thesis and Stalnaker’s Thesis−. One impor-
tant step in achieving this goal is to develop a new update operation, which we call
‘Hyperconditionalization’. This section goes through an intuitive overview of how
probability and update work in the theory.

Before proceeding, a point about notation. We will allow ourselves to be sloppy
and use disjunctions of the form ‘wi ∨wk ∨ . . .∨wn’ to stand for sentences true exactly
at worlds wi ,wk , . . . ,wn. This mixes object language and metalanguage, but it allows
us to be more concise.

5.1 Probability

Paths are the basic bearers of probability. To assign probability to paths, we start from
an ordinary probability distribution over worlds and ‘lift’ it to paths. The lift opera-
tion is based on work by Justin Khoo (in Khoo and Santorio 2018) and is simple: the
probability of a path is given by the product of the probabilities of each individual

19



world, conditional on the previous worlds in the path being ruled out. Using a sim-
ple example, consider again the path 〈w1,w2,w3〉. Its probability is the product of
the probability of w1, the probability of w2 conditional on w1 not obtaining, and the
probability of w3 conditional on both w1 and w2 not obtaining. This way of assigning
probability captures the idea of possibilities in the path as fallback options.

Paths are more fine-grained possibilities than worlds: each world corresponds to a
set of paths, i.e. all the paths that have that world as their first member. Accordingly,
while in standard models worlds are the basic points in an algebra, in our model
worlds are treated as cells to be further divided into sub-possibilities which differ in
their modal and conditional commitments.

Consider an information state with four worlds {w1,w2,w3w4}. The resulting model
will include four cells corresponding to each of w1–w4. In turn, each cell is divided
into sub-cells corresponding to other fallback worlds in the path. For example, the
cell corresponding to w1 is divided into three sub-cells, depending on which world is
the first fallback option (w2, w3, or w4). Each of these sub-cells is further partitioned
into two sub-cells, representing a choice of a second fallback world.

We can represent this in a diagram. For simplicity, we assume all of w1–w4 are
equiprobable, so all cells have the same size. We use ‘[w1 . . .wiwk]’ to represent that
wk is being used as a fallback possibility with respect to w1 . . .wk (more precisely,
[w1 . . .wk] represents the set of paths which begin with the sequence 〈w1, . . . ,wk〉).

w1 w2 w3 w4

[w1w2]

[w1w3]

[w1w4]

[w2w1]

[w2w3]

[w2w4]

[w3w1]

[w3w2]

[w3w4]

[w4w1]

[w4w2]

[w4w3]

1234 1243

1324 1342

1423 1432

2134 2143

2314 2341

2413 2431

3124 3142

3214 3241

3412 3421

4123 4132

4213 4231

4312 4321

Figure 1: paths induced by the information state {w1,w2,w3,w4}

Suppose again that A is true at w1, w2 and B at w2, w3. The shaded area represents the
portion of logical space where A→ B is true.
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w1 w2 w3 w4

[w1w2]

[w1w3]

[w1w4]

[w2w1]

[w2w3]

[w2w4]

[w3w1]

[w3w2]

[w3w4]

[w4w1]

[w4w2]

[w4w3]

1234 1243

1324 1342

1423 1432

2134 2143

2314 2341

2413 2431

3124 3142

3214 3241

3412 3421

4123 4132

4213 4231

4312 4321

Figure 2: probability of A→ B, with ~A� = {w1,w2} and ~B� = {w2,w3}.

This diagram helps illustrate how the account validates Stalnaker’s Thesis−. The area
occupied by the conditional is half of the total area of the diagram. This accords with
Stalnaker’s Thesis, which predicts that A→ B has probability 1/2 = P r(A∧B)

P r(A) = 1
4 /

1
2 .

5.2 Update

Conditionalization does not interact well with this picture of content. Suppose that,
in our example, we conditionalize on w2 ∨w3 ∨w4: hence we remove the entire w1
cell, but leave the rest unaltered. Then w1 still plays the role of fallback possibility:

w2 w3 w4

[w2w1]

[w2w3]

[w2w4]

[w3w1]

[w3w2]

[w3w4]

[w4w1]

[w4w2]

[w4w3]

2134 2143

2314 2341

2413 2431

3124 3142

3214 3241

3412 3421

4123 4132

4213 4231

4312 4321

Figure 3: probability of A→ B after conditionalizing on w2 ∨w3 ∨w4.

This means that the conditional w2→ w1 is assigned positive probability, despite
the fact that w1 has been ruled out. This will produce failures of the Positive Preser-
vation condition discussed in §2.

To avoid this problem, we propose an update operation that we call Hypercondi-
tionalization. Hyperconditionalization works as follows. We first update each path
individually by removing worlds that are incompatible with the new information. For
example, suppose again that we update on w2∨w3∨w4. The paths on the left are up-
dated to the paths on the right.
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〈w3,w2,w1,w4〉 ⇒ 〈w3,w2,w4〉
〈w2,w1,w4,w3〉 ⇒ 〈w2,w4,w3〉
〈w1,w2,w3,w1〉 ⇒ 〈w2,w3,w4〉
. . . ⇒ . . .

Then each path simply transfers its credence to the path that results from updating
it. Given the way that paths are constructed, this transfer is many-to-one: several
paths from the previous epistemic state transfer their credence to the same path in
the updated epistemic state.

To illustrate this process, consider Figure 4. The arrows represent the transfer of
probability from any given path to its resulting path in the result of hypercondition-
alizing on w2 ∨w3 ∨w4. To avoid clutter, we only represent w1 and w2; w3 and w4
work pretty much like w2.

w1 w2 . . . . . .

[w1w2]

[w1w3]

[w1w4]

[w2w1]

[w2w3]

[w2w4]

1234 1243

1324 1342

1423 1432

2134 2143

2314 2341

2413 2431

w2

234

243

324

342

423

432

Figure 4: probability of A→ B after update on w1.

The crucial feature of this procedure is that it makes the update operation and the
lift operation commutative. Suppose we start from an ordinary credence distribution
P r over worlds, and a proposition p that is the new information. Now consider two
different ways of proceeding: (i) we lift P r to an epistemic state involving a credence
distribution over paths, and hyperconditionalize the latter on p; (ii) we conditionalize
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P r on p, and then lift the result to an epistemic state involving a credal distribution
over paths. Procedure (i) and (ii) yield the same results. This means that Hypercondi-
tionalization is in some sense conservative with respect to classical probability.

This ends our overview; we now turn to spelling out the theory in detail.

6 Probability

The starting idea for our account is that each agent is endowed with two credence
functions. The first is an ordinary credence function, which assigns probabilistic cre-
dences to standard propositions. The second credence function assigns credal values
to all contents, including contents of modal and conditional claims. Crucially, this
second credence function can be derived from the first via a ‘lifting’ operation that we
describe below. So there is a sense in which the second credence function is grounded
in the subject’s credences over standard contents.

Even though we can ultimately rely on standard credences to fix credences in all
contents, both credence functions model genuine attitudes. Lifted credences are no
less ‘real’ than basic credences. In particular, lifted credences are crucial for modeling
attitudes towards conditionals. These attitudes arguably play a key role in a number
of enterprises: for example, decision theory and explaining subject’s behavior.18

In this section, we introduce the two credence functions and the lifting proce-
dure. After that, we show that the lifting operation guarantees that conditionals are
assigned probabilities that conform to Stalnaker’s Thesis. Our proof is an adaptation
of a proof by Justin Khoo (in Khoo and Santorio 2018), which in turn modifies proofs
about probabilities of sequences that are based on work by Bas Van Fraassen (van
Fraassen 1976, Bradley 2012, Kaufmann 2009, Bacon 2015).

6.1 Epistemic spaces and proto epistemic spaces

We assume that every agent is endowed with two different credence measures: one
over possible worlds, and one over possible paths. The former makes up what we
call the agent’s “proto epistemic space (variable: U )". The latter makes up we call
an “epistemic space" (variable: E). Both proto epistemic spaces and epistemic spaces
are pairs of a set of possibilities, and a probability measure defined over the power set
(the set of all subsets) of those possibilities. In both cases, for the sake of simplicity, we
will assume that the set of possibilities is finite and that the probability distribution
is regular, assigning a positive probability to each point.19

18Some theorists suggest introducing the notion of a suppositional attitude and using it in decision
theory and related enterprises (see e.g. Williams 2012). For example, on Williams’ view, Sarah has a
suppositional credence in the die landing 6, on the supposition that it lands even. Crucially, though, on
an account like Williams’ suppositional credences are supposed to march in step with credences in the
corresponding conditionals.

19We depart slightly from a more standard presentation in which a space is a triple of a set of possibili-
ties, an algebra defined on that set, and a probability measure defined on the algebra. We grant ourselves
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Definition 4. Proto-epistemic space.

A proto epistemic space is a pair U = 〈W,P r〉, where:

1. W is a set of possible worlds.

2. P r assigns a positive probability to every member of the power set of W .

The agent’s proto epistemic space is then used to construct her credence function over
paths, her epistemic space (E). Since the meaning of each sentence in our language
is a set of paths, this new credence function determines an agent’s credence in any
particular claim.

Definition 5. Epistemic space.

An epistemic space is a pair E = 〈P ,C〉, where:

1. P is a set of paths.

2. C assigns a probability to every member of the power set of P .

Drawing on Khoo (in Khoo and Santorio 2018), we introduce a procedure for deriving
an epistemic space from a proto epistemic space. The idea is that every probability
measure over worlds induces a unique probability measure over paths, according to
a precise definition. To state this definition, it is useful to introduce a bit of notation
for certain special sets of paths that agree on a fixed initial segment of worlds. To that
end, we let p[w1, . . . ,wn] = {p | p1 = w1, . . . ,pn = wn}. Now we introduce our preferred
operation ↑ for deriving a probability measure over paths from a measure over worlds.

Definition 6. Lift to epistemic spaces.

The epistemic space E = ↑U is lifted from proto-epistemic space U = 〈W,P r〉 iff E =
〈P ,C〉 where:

1. P is the set of all paths of worlds in W .

2. C assigns a probability to every member of the power set of P , subject to the con-
straint:

(a) C(p[w]) = P r(w)

(b) C(p[w1, . . . ,wn]) = C(p[w1, . . . ,wn−1])× P r(wn)
P r(W−{w1,...,wn−1})

With our lift operation defined, we can then define the class of epistemic spaces
over paths that can be derived from some underlying measure over worlds.

Definition 7. Well-behaved epistemic spaces.

this simplification because we assume in each case that the relevant algebra is simply the power set of
the possibilities under discussion.
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E is a well-behaved epistemic space just in case there exists some proto epistemic
space U where E = ↑U .

The notion of well-behavedness plays a crucial role in our account, and in partic-
ular in our proof of ST−. In this section, we show that every well-behaved credence
distribution vindicates ST−. In the next section, we show that our proposed update
operation, differently from standard Conditionalization, maps well-behaved spaces
to well-behaved spaces. So well-behavedness figures prominently in the proofs of the
two main formal results (i.e. Theorems 1 and 3 below).
To illustrate the idea of path probability, let’s return to our working example. Now
imagine that our three possible worlds are equipped with a probability measure, and
consider how that would affect the corresponding probability of the resulting paths.
From the construction above, we have

C(〈w1,w2,w3〉) = C(p[w1,w2])× P r(w3)
P r(w3)

= C(p[w1,w2]) =

= C(p[w1])× P r(w2)
P r({w2,w3})

= P r(w1)× P r(w2)
P r({w2,w3})

=
P r(w1)× P r(w2)
P r({w2,w3})

=
P r(w1)× P r(w2)
P r(w2) + P r(w3)

Generalizing, we have that C(〈wa,wb,wc〉) = P r(wa)×P r(wb)
P r(wb)+P r(wc)

. The probability of path
〈wa,wb,wc〉 is found by weighting wa’s probability by the amount of probability wb is
assigned conditional on wa not obtaining. This induces the following stochastic truth
table, filling in a particular choice of probability measure for worlds:

world P r
w1 3/6
w2 2/6
w3 1/6

path C
w1,w2,w3 2/6
w1,w3,w2 1/6
w2,w1,w3 3/12
w2,w3,w1 1/12
w3,w1,w2 3/30
w3,w2,w1 2/30

Notice that in this example, the ur-probability of w1 is 3
6 , and this is also the probabil-

ity of the set of all paths that begin with w1. This points to a more general structural
feature. When E is constructed from U , E and U assign the same probability to any
descriptive claim. After all, descriptive claims are true at a path just when they are
true at the first world in the path. So the meaning of any descriptive claim is the set of
paths where that claim is true at the first world in it. But the construction procedure
above for deriving E from U guarantees that the probability of any set of paths that
agree on the initial world is simply the probability of that world in U .
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6.2 Vindicating Stalnaker’s Thesis−

Now that we’ve seen an example of path probability, we turn to its signature property:
the restricted version of Stalnaker’s Thesis, i.e. ST−, is valid.

Theorem 1. For all C, for all descriptive A and B, and for any C that is the credence
function of a well-behaved epistemic state E:

C(A→ B) = C(B | A)

We confine the full proof to an appendix. But we can illustrate the key ideas
through our running example.

world P r
w1 3/6
w2 2/6
w3 1/6

path C
w1,w2,w3 2/6
w1,w3,w2 1/6
w2,w1,w3 3/12
w2,w3,w1 1/12
w3,w1,w2 3/30
w3,w2,w1 2/30

Now consider the probability of the following conditional:

(21) (w1 ∨w2)→ w1
If the die didn’t land 3, it landed 1.

This conditional states that if an agent is in one of w1 or w2, they are in w1. Stalnaker’s
Thesis says that the probability of this conditional is simply the probability of being in
w1, conditional on being in w1 or w2. Now (21) is true at any path where w1 precedes
w2. So it is true at 〈w1,w2,w3〉, 〈w1,w3,w2〉, and 〈w3,w1,w2〉. The probability of this set
of paths is just their sum: 2

6 + 1
6 + 3

30 = 3
5 . Now consider the conditional probability of w1

given w1∨w2. w1 is true at all paths whose first member is w1: this is 〈w1,w2,w3〉 and
〈w1,w3,w2〉. By contrast, w1 ∨w2 is true at the first four paths, where the first world
in the path is either w1 or w2. So the relevant conditional probability is P (p[w1])

P (p[w1]∪p[w2]) =
P ({〈w1,w2,w3〉,〈w1,w3,w2〉})

P ({〈w1,w2,w3〉,〈w1,w3,w2〉,〈w2,w1,w3〉,〈w2,w3,w1〉})
= 2/6+1/6

2/6+1/6+3/12+1/12 = 1/2
5/6 = 3

5 . Here we have a
valid instance of Stalnaker’s Thesis.

In passing, let us also notice that the foregoing also shows that our theory vin-
dicates Positive Preservation. As we noted, Positive Preservation is entailed by ST,
hence by vindicating the latter we also vindicate the former.

We’ve now developed a theory of probability that vindicates Stalnaker’s Thesis.
To avoid triviality, we introduce a new update procedure that replaces conditionaliza-
tion. Before we turn to that task, however, we pause to note that our theory also makes
reasonable predictions about the probability of epistemic modal claims. [CHECK]
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6.3 Vindicating Must Preservation, Might Contradiction, and Positive Preserva-
tion

In path semantics, epistemic modals quantify over permutations of paths. �A is true
at p just in case A is true at every permutation of p. ♦A is true at p just in case A is
true at some permutation of p. These meanings correspond to the standard ones in
an information sensitive semantics: �A and ♦A are true at an information state i iff,
respectively, all or some world in i validates A.

This treatment of epistemic modals induces a transparent theory of their probabil-
ity. The probability of a modal claim is always 1 or 0, depending on the probabilistic
status of that claim’s prejacent.

Theorem 2. For any A and for any C that is the credence function of a well-behaved
epistemic state E:

1. C(�A) =

1 if C(A) = 1

0 otherwise

2. C(♦A) =

1 if C(A) > 0

0 otherwise

An immediate consequence of Theorem 2 is that we vindicate both of the prin-
ciples about epistemic modals that gave rise to triviality, i.e. Must Preservation and
Might Contradiction. Stated in terms of lifted credences, these principles say:

Must Preservation (MP). Where C is a rational credence function: If C(A) =
1, then C(�A) = 1.

Might Contradiction (MC). Where P r is a rational probability function:
If C(Ā) = 1, then C(^A) = 0.

The inference from A to �A preserves certainty: whenever an agent is certain of A,
their credence in �A is 1. But the inference does not preserve probability. If the
agent’s credence in A is merely 2

3 , the transparency thesis implies that their credence
in �A is 0. Similarly, an agent’s being certain of Ā guarantees that they assign zero
credence to ♦A. But a rational agent who has credence less than 1 in Ā will be certain
that ♦A.

We confine the proof of Theorem 2 to an appendix. To get a feeling for why it
holds, consider our running example.

world P r
w1 3/6
w2 2/6
w3 1/6

path C
w1,w2,w3 2/6
w1,w3,w2 1/6
w2,w1,w3 3/12
w2,w3,w1 1/12
w3,w1,w2 3/30
w3,w2,w1 2/30
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Against the background of this scenario, consider first:

(22) a. The die landed on 1, 2, or 3.
b. The die must have landed on 1, 2, or 3.

(23) a. The die didn’t land on 4.
b. The die might have landed on 4.

The statements in (22) witness Must Preservation, since they both have probability
1. The statement in (23) witness Might Contradiction, since (23-a) has probability 1
and (23-b) has probability 0.

At the same time, we can see that Must Preservation and Might Contradiction
don’t, in general, preserve probability (or lack thereof). Consider

(24) a. The die landed 1.
b. The die might have landed 1.
c. The die must have landed 1.

C(The die landed 1) is the probability of the set of paths at which the die lands 1. This
set is {〈w1,w2,w3〉,〈w1,w3,w2〉}. So we have:

C(The die landed 1) = 2/6 + 1/6 = 1/2

Differently from (24-a), (24-b) and (24-c) are true at all paths or at none; hence they
are always assigned extreme probabilities. In this particular case, we have:

C(The die might have landed 1) = 1
C(The die must have landed 1) = 0

Hence, when A has intermediate credence, ♦A has credence 1, and �A has credence 0.
Assigning always only extreme probabilities to might A and must A is controver-

sial (see e.g. Moss 2015, Charlow Forthcoming). Let us emphasize that this part of the
framework can be disentangled from the rest: a different semantics for modals would
yield different results. Given constraints of space, we won’t consider alternative op-
tions here.20

7 Update

This section develops our rule for rational update. First, we review why condition-
alization is incompatible both with the way in which we construct epistemic spaces,
and with Stalnaker’s Thesis. Then we develop our alternative.

20For example, we could enrich the theory above with the generalized accessibility relations in Gold-
stein 2018.
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7.1 Why simple conditionalization won’t work

Suppose an agent’s current epistemic space is 〈P ,C〉. The first, obvious proposal for
modeling update is that the agent’s updated credence function after learning A is
C(· | A), which assigns any claim B the ratio of C(A∧B) to C(A).

Definition 8. Conditionalization on epistemic spaces.
Where epistemic space E = 〈P ,C〉, E +C A = 〈P ,C+〉, where C+(B) = C(B∧A)

C(A) .

The problem is that this operation does not always return a well-behaved epistemic
space. I.e., the resulting model will not be lifted from a probability distribution on
worlds. To see this, return to our running example:

world P r
w1 3/6
w2 2/6
w3 1/6

path C
w1,w2,w3 2/6
w1,w3,w2 1/6
w2,w1,w3 3/12
w2,w3,w1 1/12
w3,w1,w2 3/30
w3,w2,w1 2/30

Suppose we conditionalize C on the information that w1 doesn’t obtain, by removing
all paths starting with w1. We reach the following probability measure:

path C+

w1,w2,w3 0
w1,w3,w2 0
w2,w1,w3 1/2
w2,w3,w1 1/6
w3,w1,w2 1/5
w3,w2,w1 2/15

The probability measure in C+ has two undesirable properties. First, it cannot result
from lifting a proto-epistemic space 〈W,P r〉. Since the probability of path 〈w1,w2,w3〉
is 0, given the way path probability is defined, P r must assign probability zero to one
of w1, w2, or w3. But this would imply that the probability of all the other paths
containing these worlds would also be zero. Second, C+ does not vindicate Stalnaker’s
Thesis. Notice that C+(w2∨w3 | w1∨w3) = 1 (since w2∨w3 has a probability of 1). But
the conditional (w1 ∨w3)→ (w2 ∨w3) is false at a path that has positive probability,
namely 〈w2,w1,w3〉, hence the conditional gets probability lower than 1.
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7.2 Hyperconditionalization

We say that while 〈P ,C〉 is a rational epistemic space, 〈P ,C〉+CA is not. The class of ra-
tional epistemic spaces is not closed under conditionalization. Instead, it is closed un-
der a new update rule, which we call ‘Hyperconditionalization’ and represent as ‘+HC’.
Hyperconditionalization is different extensionally from Conditionalization, but it is
conceptually similar. The basic idea is that possibilities incompatible with the new in-
formation should be ruled out from appearing at any position in paths. Accordingly,
we cannot merely rule out paths, but we also have to remove some of their members.21

Crucially, this rule will take well-behaved epistemic spaces to well-behaved epistemic
spaces.

We start by giving a concrete illustration of Hyperconditionalization, and then
state the rule formally.

To start, recall the notion of path update:

p+A (the update of p with A) is the largest member of the set:{
p′ ≤ p | ∀p′′ if p′′ ∗ p′ then p′′ ∈ ~A�

}
I.e., the update of a path p with A is the largest subsequence of p such that all of its
permutations make A true. We gave some examples of path update in §4. Hypercon-
ditionalizing an epistemic state E on A proceeds in two simple steps.

i. First, for every path p in E, we determine its update p+A.

ii. Second, for every path p in E, we transfer its credence to p+A.

Let us illustrate this with our working example. Suppose that the agent starts from
the following credence distribution in worlds and resulting credence function over
paths.

world P r
w1 3/6
w2 2/6
w3 1/6

path C
w1,w2,w3 2/6
w1,w3,w2 1/6
w2,w1,w3 3/12
w2,w3,w1 1/12
w3,w1,w2 3/30
w3,w2,w1 2/30

Now suppose that the agent learns (25).

(25) The die landed on 2 or 3.

As a first step, she updates each path with the information in (25).

21Hyperconditionalization is similar to the update operation of ‘deep conditioning’ in the Van
Fraassen-style framework used by Kaufmann 2015.
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〈w1,w2,w3〉 ⇒ 〈w2,w3〉
〈w1,w3,w2〉 ⇒ 〈w3,w2〉
〈w2,w1,w3〉 ⇒ 〈w2,w3〉
〈w2,w3,w1〉 ⇒ 〈w2,w3〉
〈w3,w1,w2〉 ⇒ 〈w3,w2〉
〈w3,w2,w1〉 ⇒ 〈w3,w2〉

Then she transfers the credence in the paths in her old epistemic state to the updated
paths. This mapping is many-to-one, so the credence in the new paths ends up being
a sum of credences in the old paths. This is the result we get:

path C∗

w2,w3 2/6 + 3/12 + 1/12 = 2/3
w3,w2 1/6 + 3/30 + 2/30 = 1/3

We now give a formal statement of the update operation.

Definition 9. Hyperconditionalization.
Where epistemic space E = 〈P ,C〉, E +HC A = EA = 〈PA,CA〉, where:

(i) PA = {p+A | p ∈ P }

(ii) CA(p) =
∑
C(p′) : p = p′ +A

(iii) CA(B) =
∑

p∈BCA(p)

This concludes our statement of Hyperconditionalization. We now turn to show-
ing that Hyperconditionalization validates the Update Thesis and Robust Stalnaker.

7.3 Proving the Update Thesis

Having defined both a semantics for conditionals and a full theory of probability and
update, we are in a position to prove the Update Thesis. Stated in terms of lifted
credences, the Thesis says the following:

Update Thesis. For all rational C and all A, B: C(A→ B) = CA(B)

The proof works simply by observing that, given our semantics and our accounts of
probability and update, probabilities of conditionals and updated probabilities are
equal by construction.

First of all, notice that a subject S’s credence in A→ C equals the sum of S’s cre-
dences in the paths at which A→ C is true. The latter sum, in turn, equals the sum of
S’s credences in the paths that, updated with A, make C true.

C(A→ C) =
∑

p � A→C

C(p) =
∑

p+A � C

C(p)
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Consider now S’s credence in C, updated in A. Notice first that (similarly to what
happened above) this credence equals to the sum of S’s credences, updated on A in
paths that make C true.

CA(C) =
∑
p � C

CA(p)

But now, via clause (ii) of Definition 9, we know that S’s credence, updated on A in a
path p equals the sum of S’s previous credences in paths p′ such that p′, updated on
p, is identical to p.

CA(p) =
∑

p′ : p=p′+A

CA(p′)

Putting these two together, we get that S’s credences in C, updated on A, equal the
sum of their non-updated credences in paths that, updated with A, make C true.

CA(C) =
∑

p′ : ∃p: p=p′+A∧p � C
CA(p′) =

∑
p′+A � C

CC(p′)

Putting all together, we get that S’s credence in C(A→ C) and their updated credence
CA(C) both equal the same sum of credences in paths.

C(A→ C) =
∑

p+A � C

C(p) = CA(C)

The Update Thesis is one of the three main results of this paper, so it may seem
surprising that the proof is so unremarkable. But the reason why the proof is unre-
markable is that the definitions of update used in the semantics and in the model of
credence are close variants of each other. This is just a formal implementation the
insight at the basis of the suppositional view: there is a close link between the update
performed by conditional if -clauses and the update of epistemic states.

7.4 Proving Robust Stalnaker

Our third desideratum for a theory of conditionals and probability is what we called
Robust Stalnaker. Stated in terms of lifted credences, RS says:

Robust Stalnaker. For all rational C, all descriptive A, B, and all C:

CC(A→ B) = CC(B | A)

RS says that by updating a credence function on any sentence C, we reach a new
credence function on which the credence assigned to a conditional A→ C equals the
conditional credence CC(B | A). Robust Stalnaker amounts to saying that Stalnaker’s
Thesis− is robust under update.

To prove RS, we take a detour through another property of the system. We first
notice that Hyperconditionalization is equivalent to a different way of updating epis-
temic spaces. Then, we point out that this guarantees that Stalnaker’s Thesis− will
hold at the updated distribution.
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Suppose that, rather than hyperconditionalizing on their lifted credence function,
the subject updates as follows. First, they conditionalize their proto-epistemic state
on the relevant proposition.22 Then, they lift the updated proto-epistemic state to
an epistemic state. As it turns out, the two update procedures yield identical results.
This is captured by our Theorem 3.

Theorem 3. Let E = 〈P ,C〉 be an epistemic state such that E = ↑U , with U = 〈W,P r〉.
Let EA = 〈P A,CA〉 = ↑UA, where UA is the proto-epistemic space 〈W ∩ ~A�, P rA〉 we
reach by conditionalizing U on A. Then:

CA(p) =
∑

C(p′) : p = p′ +A = CA(p)

The proof of Theorem 3 is confined to the Appendix.
Theorem 3 is philosophically significant. It shows that we can view an agent’s cre-

dences over paths as evolving in two different ways. First, we can think exclusively
about her credences in paths, and represent her as hyperconditionalizing. Alterna-
tively, we can represent her as fundamentally updating her credences in worlds, and
then deriving a new path by our lift operation.

This shows that we can think of our new update rule as emerging naturally out of
more basic ingredients. Fundamentally, an agent is endowed with a credence func-
tion over worlds. This credence function changes over time by the familiar process
of ordinary conditionalization. But at any time, an agent’s doxastic perspective ex-
tends beyond her credence in worlds. Her credence in worlds determines her broader
outlook on modal matters via our construction procedure. And her credences in the
latter count: as we mentioned, credences in conditionals will presumably play a role
in decision theory and the explanation of behavior. Hyperconditionalization shows
how the agents’ credences should update when we take the modal perspective.

Theorem 3 also helps us prove two further results. As anticipated, the first is
Robust Stalnaker. To see this, notice first that the following is a consequence of
Theorem 3:

Theorem 4. Suppose E is well-behaved. Then, for all A, EA is well-behaved.

An epistemic state is well-behaved iff it is the result of lifting a proto-epistemic
space. Suppose that E is well-behaved, and hence there is a proto-epistemic state U
that it is lifted from. Theorem 3 states that EA is equivalent to the result of condition-
alizing U on A, and then lifting the resulting proto-epistemic state. This guarantees
that there is a proto-epistemic state that, when lifting, yields EA. Hence EA is well-
behaved.

Now, via Stalnaker’s Thesis−, we know that, in every well-behaved epistemic
state, if A and B are descriptive, C(A → B) = C(A | B). Hence Theorem 4 and Stal-

22Some work will need to go into defining what propositions are used for update in path semantics;
see Santorio 2019b for details. The basic idea is that, in analogy with path update, when updating i on
A, the proposition we conditionalize on is the largest subset of i, i′ ⊆ i such that A is true at all paths
generated from i′ .
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naker’s Thesis− together guarantee that, whenever we update a lifted credence dis-
tribution on any sentence, we reach a credence distribution that validates Stalnaker’s
Thesis−. This is Robust Stalnaker.

Theorem 3 also explains why Hyperconditionalization delivers the same results
as Conditionalization for the descriptive fragment of the language. We saw earlier
that whenever E is constructed from U , E and U agree on the probability of any
descriptive claim. But Theorem 3 shows that hyperconditionalizing delivers the same
results as simply conditionalizing U and constructing a new epistemic space. For this
reason, when E is hyperconditionalized on A we know that the result will assign any
descriptive claim B the conditional probability of B given A in U .

8 Further issues

8.1 Hyperconditionalization as Imaging

Before moving on, one quick remark. Hyperconditionalization is an instance of a well
understood alternative to conditionalization: imaging. When an agent updates with
A via imaging, she shifts probability from one set of points to another with the help
of a selection function.23 The probability of any point x is shifted to f (x,A), the point
that is in some sense the most similar to x where A is true. Our update rule is a type
of imaging. Our update rule functions by shifting probability from a set of paths to
another set of ‘selected paths’. In particular, for us f (p,A) = p+A. Crucially, however,
our rule differs from the kind of imaging discussed in extant literature, because the
selection function implicit in our update procedure operates on paths rather than
worlds. Empirically, this means that our update rule validates Stalnaker’s Thesis,
which connects the probability of the conditional to the corresponding conditional
probability, rather than simply to the probability of the consequent after imaging
on the antecedent. By contrast, consider an ordinary possible worlds semantics for
conditionals in terms of selection functions. If probabilities are assigned to sets of
worlds and an agent updates her credences by imaging, her credence in conditionals
will not satisfy Stalnaker’s Thesis. In this respect, our theory departs significantly
from previous applications of imaging.

8.2 Undefined updates

The definition of hyperconditionalization exploits the notion of path update. There is
a wrinkle though. Recall from §4 that the notion of the update of a path with a sen-
tence A is not well defined for every sentence. One relevant example is the following:

(20) The die must have landed on two, or the die must have landed on an odd
number.

23See for example Lewis 1976, Gardenfors 1982.
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Path semantics solves this problem by building a homogeneity requirement in the
semantics of conditionals. A > C is defined just in case C has the same truth value on
all the largest updates of p with A. This solves the problem for defining truth (at the
cost of moving to a trivalent system), but not the problem of defining probability.

We see a few solution to address this problem.24 The one that we adopt is simply
to accept that probabilities for some conditionals with complex antecedents are un-
defined. We choose this option because it strikes us as very plausible empirically. For
an example, consider:

(26) If the die must have landed on two or it must have landed on an odd number,
then it landed on 1, 2, or 3.

What is the probability of (26)? The answer is unclear. It is very hard to form any kind
of precise judgment. So we find it plausible to say that (26) does not have a precise
probability, and to propose a theory that predicts that.25

8.3 Updating on modal information

Our theory also delivers interesting predictions about update with modal claims. Re-
call two features of path update from §4:

i. Updating a path with �A has identical effects to updating it with A

ii. Updating a path with A→ C has identical effects to updating it with the material
conditional A ⊃ C.

Given these features, the credal update on an epistemic states that is generated by
�A and A > C is fully fixed: we just look at the results of hyperconditionalizing on,
respectively, A and A ⊃ C.

For the case of ♦A, things are slightly different. This claim functions as a test, in the
sense of Veltman 1996. Updating a path on ♦A either maintains the path unaltered, or
removes all the worlds from the path, effectively taking the path to an ‘absurd’ state.
Things will work analogously for credence. Either the subject’s credal distribution
will remain the same, or the subejct will end up with an absurd credence distribution
and will have to perform some belief revision.

24One option would be to impose a symmetric requirement for probability: the probability of A > C
is defined at p iff, for every maximal update A′ of p relative to A, p[A′] receives the same probability.
This might work, but it would still have the effect that, in the great majority of cases, the probability
of A > C is undefined when A does not induce a unique maximal update. Another viable option would
involve using as the update of p relative to A the union of all the maximal updates as we have defined
them. As an anonymous referee points out, this comes with some drawbacks for the logic: in particular,
it invalidates the idempotence principle A > A.

25A variant of this proposal: conditionals with antecedents that don’t induce a unique multiple update
have interval-valued probabilities. Before launching into developing this proposal formally, it seems
advisable to gather some further empirical evidence for the claim that conditionals have interval-valued
probabilities.
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This is a good moment to point out that the overall view of modal content and
update is not committed to the specific views that �A and ♦A are always assigned ex-
treme probabilities. This is just the simplest option to take, and what is suggested by
adopting the most basic version of informational semantics for modals. But there are
arguments to think that might- and must-claims have a more sophisticated semantics;
see e.g. Willer 2013, Moss 2015, Goldstein 2018. These views are in principle com-
patible with out apparatus, though for reasons of space we have to leave discussion of
them to future work.

8.4 Consequences: Assertability and logical consequence

Our theory has a consequence that is, at first sight, surprising: sentences that are
informationally incompatible are probabilistically compatible. To see this, go back to
the die example; a six-sided die has been tossed, and we have no information about
the outcome. Consider:

(27) a. The die didn’t land on 6.
b. The die might have landed on 6.

Holding fixed the toy model where we have six worlds, each with equal credence,
(27-a) and (27-b) are assigned, respectively, probability 5/6 and 1. What is more strik-
ing, their conjunction (in (28)), which is a so-called epistemic contradiction and infor-
mationally inconsistent, is also assigned probability 5/6.

(28) The die didn’t land on 6 and it might have landed on 6.

This might give rise to two potential worries.26 The first has to do with assertability,
and the second with consequence.

The first worry is that this result is clearly problematic if we hold, following a
suggestion going back to Adams 1975, that credence tracks (at least, roughly) the
degree of assertability of a proposition. Adams’ idea has two components. The first
is that the assertability of a sentence is not an all-or-nothing issue, but rather comes
in degrees. The second is that degrees of assertability match degrees of truth. This
idea has a fruitful application just to conditionals: the degree of assertability of a
conditional A→ B equals the conditional probability of B, given A.

Now, preserving Adams’ idea would have disastrous consequences for us, in light
of the facts discussed above. We would predict that epistemic contradictions like
(28) are highly assertable. But of course, whether we regard (28) as infelicitous for
semantic or pragmatic reasons, (28) is obviously infelicitous. Our first response is
that degree of credence simply doesn’t track degree of assertability. We are inclined
to accept a knowledge norm on assertion (Williamson 2000). But an agent’s credence
in p can be quite high without her knowing p. For example, an agent can have a quite
high credence that she will lose the lottery, and yet this claim is not assertable to any

26Thanks to an anonymous referee for raising both of these worries.
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degree. Similarly, an agent can have a high degree of confidence in the conjunction
p and I don’t know p, and yet this is maximally unassertable.27 For those who would
reduce assertability to credence, one option would be to modify the semantics above
so that epistemic contradictions receive a probability of 0. For example, one option
would be to rely on a dynamic semantics for conjunction, where the second conjunct
is evaluated relative to the information state that results from updating with the first
conjunct (see Groenendijk et al. 1996). This theory of conjunction predicts that p∧♦¬p
is false at every path, and so has a probability of 0.28

9 Fitelson’s Resilient Equation

In this section, we link our results to a recent discussion of Stalnaker’s Thesis by
Branden Fitelson. Fitelson (2015) discusses a principle that he calls the “Resilient
Equation":

Resilient Equation (RE). For any descriptive A, B, C:

P r(A→ B | C) = P r(B | A∧C).

As Fitelson shows, RE leads immediately to triviality, without need of appealing to
the combination of Closure, Ratio, and Conditionalization. Fitelson takes this to
show that RE should unequivocally be rejected. He traces the difficulty to a principle
of conditional logic, Import-Export (that A→ (B→ C) |=|= (A∧ B)→ C), which entails
RE in combination with ST.

We agree that RE should be rejected—as Fitelson points out, the route from RE
to triviality is inescapable. But we disagree with Fitelson’s diagnosis. The problem
does not have to do with Import-Export, but rather with the identification of updated
probabilities and conditional probabilities, i.e. with the step that we rejected in §3.
To better see the point, it’s helpful to notice that the same scenarios that generated
counterexamples to Stalnaker’s Thesis and Conditionalization also generate cout-
nerexamples to RE. Consider the die example from above. Let A, B, and C be the
following:29

A: The die didn’t land on two or four

B: The die landed on six

C: The die landed even

With this choice of A, B, and C, the relevant instance of RE is:

27For a recent account of degrees of assertability in terms of normality rather than credence, see Carter
2020.

28See Mandelkern 2019 for a variant of this idea that deals with other nearby kinds of epistemic
contradictions.

29A similar example is discussed in Khoo and Santorio 2018

37



(29) P r(¬(2 or 4) > 6 | even) = P r(six | even ∧ ¬ (2 or 4))

Now, the right-hand side of RE goes to 1.

P r(B | A∧C) = P r(six | even ∧ ¬ (2 or 4)) = P r(six | six) = 1

However, the left-hand side is different from 1—via the calculation we went through
in §3.2, we know that it’s 1/2. So the equation in (29) fails, and we have a counterex-
ample to RE.

What goes wrong here? Intuitively, something is wrong with (29). After learning
that the die landed even, one should not assign credence 1/2 to the conditional If the
die didn’t land on two or four, it landed on six. Rather, that credence should be 1.

This diagnosis is exactly right. RE is motivated by a correct informal intuition:
one’s credence in A → B, updated on C, should be identical to one’s credence in C,
updated on A∧C. But this intuition is formalized incorrectly if we take updated prob-
abilities to be identical to conditional probabilities. Conversely, we obtain a tenable
claim if we take update to work via Hyperconditionalization. The following is a
simple consequence of the Update Thesis:

P rC(A→ B) = P rA∧C(B)

Crucially, this claim drops the identification of updated probabilities with conditional
probabilities. Once more, the lesson of triviality is that updated probabilities are not
appropriately characterized, in general, via the ratio formula.

10 Conclusion

We began this paper by offering a unitary diagnosis of a cluster of triviality results
about conditionals and epistemic modals. Conditionalization is not the rule of ratio-
nal update when epistemic modalities and conditionals are involved. Second, build-
ing on existing work, we have developed a package of semantics and probability that
vindicates several intuitive bridge principles linking epistemic modalities and proba-
bility. Of course, some issues about epistemic modality and probability are still out-
standing. But, if we are right, we solve some important ones.

Our work is indebted to a number of similar theories which, like ours, exploit
sequences of worlds. Yet the theory we propose is innovative both technically and
conceptually. On the technical side: (i) our theory merges perfectly with standard
compositional semantics for modals and conditionals; (ii) we vindicate a large num-
ber of bridge principles between probability and modality, including a version of Stal-
naker’s Thesis that is robust under update. On the conceptual side: we suggest that a
core group of triviality results are due to the fact that Conditionalization fails when
epistemic modality is involved. As informational theorists have pointed out, epis-
temic modalities and conditionals have a nonclassical logic. This nonclassical logic
should be paired with a nonclassical theory of update.30

30Thanks to Fabrizio Cariani, Branden Fitelson, Melissa Fusco, Arc Kocurek, Justin Khoo, Kurt Norlin,
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Appendix

In this appendix, we prove the theorems from the main body of the paper.

Theorem 1. If A and B are descriptive and E is well behaved, then CE(A→ B) = CE(B |
A).

Proof. The proof is very similar to ideas in Khoo and Santorio 2018, with a few small
changes. When A and B are descriptive, p ∈ ~A → B� just in case B is true at the
first A world in p. We calculate the probability of A→ B by applying the Law of Total
Probability across the partition of paths into cells that agree on where the first A world
occurs.

Let P n
A be the set of paths where A first occurs at the nth position. Then, where n

is the cardinality of W , we have:

(30) C(A→ B) = C(P 1
A )×C(A→ B | P 1

A ) + · · ·+C(P n
A )×C(A→ B | P n

A )

Our strategy is to prove that for any i, we have C(A → B | P i
A) = P r(B | A). Then the

overall probability of A→ B is just P r(B | A), since the weights on each individual term
add up to 1.

To see why C(A→ B | P 1
A ) = P r(B | A), first note that the conjunction A→ B∧ P 1

A is
the set of paths where the first A world occurs at p1, and where A→ B is true. These
are just the paths where A∧B is true at p1, and so is simply A∧B. Thus we have:

C(A→ B | P 1
A ) =

C(A→ B∧ P 1
A )

C(P 1
A )

=
C(A∧B)
C(A)

=
P r(A∧B)
P r(A)

= P r(B | A)

(1)

Now we generalize this fact to arbitrary i. Here, there are two important steps.
First, the conjunction A→ B∧ P i

A is the set of paths where the first A world occurs at
pi , and where A→ B is true. As before, this is just the set of paths where the first A
world occurs at pi , and B is true there. Any such path consists of i − 1 worlds where
¬A is true, and then a world where A∧B is true.

The second step is to calculate the probability of P i
A and of A→ B∧ P i

A. The former
set contains just those paths that consist of i −1 worlds where A is false, followed by a
world where A is true. We can partition this set based on which worlds exactly make
up the path up to i, so that:

Ginger Schultheis, Robbie Williams, and the Melbourne University Logic Seminar.
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C(P i
A) =

∑
w1,...,i−1∈¬A

∑
wi∈A

C(p[w1, . . . ,wi−1,wi])

We can then understand this last quantity in terms of P r by appeal to the con-
struction of path probability, reaching:

C(P i
A) =

∑
w1,...,i−1∈¬A

∑
wi∈A

C(p[w1, . . . ,wi−1])× P r(wi)
P r(W − {w1, . . . ,wi−1})

By similar reasoning, we have:

C(A→ B∧ P i
A) =

∑
w1,...,i−1∈¬A

∑
wi∈A∧B

C(p[w1, . . . ,wi])

Again, we can reduce this quantity using the construction of path probability:

C(A→ B∧ P i
A) =

∑
w1,...,i−1∈¬A

∑
wi∈A∧B

C(p[w1, . . . ,wi−1])× P r(wi)
P r(W − {w1, . . . ,wi−1})

All that is left is to solve for C(A→B∧P i
A)

C(P i
A)

. Here, most terms immediately cancel out,

producing:

C(A→ B∧ P i
A)

C(P i
A)

=
∑

w∈A∧B

∑
w′∈A

P r(w)
P r(w′)

= P r(B | A)

The result is that C(A→ B | P i
A) is guaranteed to be P r(B | A), no matter the choice of

i. All that is left is to return to our initial application of the Law of Total Probability:

(31) a. C(A→ B) = C(P 1
A )×C(A→ B | P 1

A ) + · · ·+C(P n
A )×C(A→ B | P n

A )
b. C(A→ B) = C(P 1

A )× P r(B | A) + · · ·+C(P n
A )× P r(B | A)

c. C(A→ B) = P r(B | A)

Theorem 2. If A is descriptive and E is well behaved, then:

1. CE(�A) =

1 if P (A) = 1

0 otherwise

2. CE(♦A) =

1 if P (A) > 0

0 otherwise

Proof. First observe that all paths in a well behaved epistemic space contain the same
live possible worlds. So either all the paths contain a live A world, or none do. In the
former case, ♦A has a probability of 1; otherwise, it has a probability of 0. Similarly,
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in the former case �¬A has a probability of 0; otherwise it has a probability of 1. All
paths in a well behaved epistemic space contain a live A world just in case that space
is based on an underlying probability function over worlds that assign some A world
a positive probability. This holds just in case the epistemic space assigns a positive
probability to A.

Theorem 3. Let E = 〈P ,C〉 be an epistemic state such that E = ↑U , with U = 〈W,P r〉.
Let EA = 〈PA,CA〉 = ↑UA, where Uwi

is the proto-epistemic space we reach by condi-
tionalizing U on descriptive A. Then:

CA(p) =
∑

C(p′) : p = p′ +A = CA(p)

Proof. Here is the overall structure of the proof. Our ultimate goal is to show that for
any C and A, we have CA = CA. First, we show that for any C and A, there exists a
descriptive proxy A∗ such that CA = CA∗ and CA = CA∗ . Second, we rely on the fact
that CA∗ is equivalent to a series of updates of the form C¬w, and CA∗ is equivalent to
a series of updates of the form C¬w. Finally, we show that C¬w = C¬w for every w.

We begin by constructing the descriptive proxy A∗ for any claim A and epistemic
space E, where updating E with A is equivalent to updating E with A∗, no matter which
update procedure one uses. To construct this proxy, we rely on the fact that updating
an epistemic space with a claim supervenes on updating the paths in that space with
A: if for every path in the space p, p+A = p+A∗, updating the overall space with A will
be equivalent to updating with A∗.

Let’s start by introducing a definition from Santorio 2019b. In §4, we defined a
notion of path update: the update of a path p with A is the largest subsequence of p
such that all of its permutations make A true. So far, we have not defined a notion of
the update of an information state. Using path(i) to denote the set of paths generated
from i, we can define it as follows:

Information state update
i +A = {w : w ∈ i and ∃p ∈ path(i): w is a member of p+A}

The update of i with A is the set of worlds that appear in some path generated by i.
Now, we can prove that the procedure for updating paths and the procedure for

updating information states are commutative, in the following sense:

Lemma 1. For all sets of paths P and all information states i such that P = path(i),
and for all A:

PA = {p+A : p ∈ P } = path(i +A)

I.e.: if we take a set of paths and update them with A, or if we take the information
state i that generates them, update i with A, and then generate a set of paths from the
updated information state, we get the same results.

Proof. P is generated from i, so P includes all and only the sequences of worlds from
i. Moreover, given the definition of path update, we know that, when we update each
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path p ∈ P with A, we always remove from p the same worlds. It follows that the paths
in PA are all and only the sequences generated from some set of worlds S. So, to prove
Lemma 1, all we need to show is that S is identical to i +A. For reductio, suppose that
this is not the case. Then (at least) one of the following two cases holds:

(i) for some world w, w ∈ S but w < i +A;

(ii) for some world w, w < S but w ∈ i +A

Assume (i). Then there is a world that is a member of all paths in S, but not of i +A.
But, by the definition of information state update, w ∈ i + A iff, for some path p in
path(i), w is a member of some path p +A. Contradiction. Now assume (ii). Again by
the definition of information state update, w ∈ i +A iff, for some path p in path(i), w
is a member of some path p + A. Then, for some path p + A in PA, w is a member of
p + A, and since all paths in PA are composed of the same worlds, w is in S after all.
Contradiction.

The next step is based on a simple observation: both path and information state
update can be modeled as a (possibly vacuous) operation of removal of worlds from a
path or an information state. In particular, as pointed out in §4, updates with modal-
ized sentences and conditionals can also be modeled in this way. Hence we have:

Lemma 2. For all i, all A, and all P = path(i): there is a descriptive A∗ such that
PA = P A∗ .

(A full proof would proceed by induction on the semantic clauses of §4, and is left to
the reader.)

The next lemma follows immediately from Lemmas 1 and 2:

Lemma 3. For all i, all A, and all P = path(i): there is a descriptive A∗ such that:

i +A = PA = P A∗ = i +A∗

Let us take stock. Given Lemma 3, we have established the following about the
non-credal part of update in the system: every update in the system can be thought
of as update with descriptive sentences. In addition, we have that the following two
procedures yield the same result: we update paths directly, or we update the infor-
mation state that generates a set of paths, and then generate a new set of paths. This
establishes something like a qualitative counterpart of Theorem 3. At this point, we
can move to considering the way that credences are updated.

Take an epistemic space E lifted from proto-epistemic space U , containing P and
W respectively. Lemma 3 guarantees that when we update E with A, we have a de-
scriptive proxy A∗ where CA = CA∗ and CA = CA∗ . In particular, where P is the set of
paths in C, the descriptive proxy is the set of worlds in P +A.

To complete the proof of Theorem 3, we show that CA∗ = CA∗ . Here, the first obser-
vation is that A∗ is equivalent to a conjunction of claims of the form ¬w, for each world
w where A∗ is false. (Crucially, since A∗ is descriptive, this notion is well-defined.) In
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addition, we know that both Hyperconditionalization and our other update procedure
are commutative for descriptive claims. Updating on a conjunction of claims of the
form ¬w is equivalent to updating on each claim of the form ¬w in order. In the case
of hyperconditionalization, this is because the underlying notion of path updating is
commutative for descriptive claims: (p + A) + B) = p + (A∧ B). In the case of our sec-
ond notion of updating, this is because the underlying notion of conditionalization is
commutative for descriptive claims: (W +A) +B = W + (A∧B). To complete our proof,
then, all that we must show is that for any claim ¬w, C¬w = C¬w.

We now show that Theorem 3 holds when A is restricted to propositions of the
form ¬w, for some choice of world w. Theorem 3 follows quickly from this lemma,
since we can express any descriptive claim A as a conjunction of propositions of the
form ¬w, for each world w eliminated by A, and updating on any such conjunction
using either update procedure is simply a matter of updating on each claim one at a
time.

We now prove:

Lemma 4. Let E = 〈P ,C〉 be an epistemic state such that E = ↑U , with U = 〈W,P r〉.
Let E¬w = 〈P¬w,C¬w〉 = ↑U¬w, where U¬w is the proto-epistemic space we reach by
conditionalizing U on ¬w. We have:

C¬w(p) =
∑

C(p′) : p = p′ +¬w = C¬w(p)

We prove this lemma by considering a series of worlds 1 through n, and arbitrarily
instantiating w with the value n (for readability, we denote worlds by natural num-
bers).

We compare two values. The first value is C¬n(〈1, . . . ,n−1〉). This value is the prob-
ability of a certain path among those constructed from worlds 1 through n − 1: that
where the worlds are ordered by number. This choice of path is arbitrary; each step of
the proof could be adjusted accordingly. The probability function under discussion is
C¬n, which results from conditionalizing U on ¬n: that is, on being in either world 1
or . . . or world n. To prove the lemma, we show that C¬n(〈1, . . . ,n − 1〉) is equal to the
sum of a seris of other values: in particular, the sum C(〈1, . . . ,n〉) and C(〈n,1, . . . ,n−1〉)
and C(〈1,n, . . . ,n− 1〉) . . . and C(〈1, . . . ,n,n− 1〉). Each of these values is the probability
of a path. In particular, we consider every path constructible from worlds 1 through
n which results in 〈1, . . . ,n−1〉 when updated with ¬n. We find the probability of that
value according to C. Summarizing, we must prove:

(32) C¬n(〈1, . . . ,n − 1〉) = C(〈1, . . . ,n〉) + C(〈n,1, . . . ,n − 1〉) + C(〈1,n, . . . ,n − 1〉) + · · · +
C(〈1, . . . ,n,n− 1〉)

For readability, we let P i denote the probability according to P r of world i. We let P ij
denote the probability of the disjunction of world i with world k.

First, observe that:

(33) C¬n(〈1, . . . ,n− 2〉) = P 1×···×P (n−1)
P (1...(n−1))×P (2...(n−1))×···×P ((n−2)(n−1))
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To prove Lemma 4, we must show that this fraction is identical to the sum C(〈1, . . . ,n〉)+
C(〈n,1, . . . ,n− 1〉) +C(〈1,n, . . . ,n− 1〉) + · · ·+C(〈1, . . . ,n,n− 1〉).

To begin, consider the probability of each sequence above.

path C
1, . . . ,n P 1×···×P n

P 2...n×P 3...n×···×P n
n,1, . . . ,n− 1 P 1×···×P n

P 1...(n−1)×P 2...(n−1)×···×P (n−1)
1,n,2, . . . ,n− 1 P 1×···×P n

P 2...n×P 2...(n−1)×···×P (n−1)
. . . . . .

1, . . . ,n,n− 1 P 1×···×P n
P 2...n×P 3...n×...P (n−1)n×P (n−1)

We can factor out P 1× · · · × P n from the sum of these terms, to reach:

(34) P 1×· · ·×P n×[ 1
P 2...n×P 3...n×···×P n+ 1

P 1...(n−1)×P 2...(n−1)×···×P (n−1)+
1

P 2...n×P 2...(n−1)×···×P (n−1)+

· · ·+ 1
P 2...n×P 3...n×...P (n−1)n×P (n−1) ]

Now we divide the first term by P (n−1)
P (n−1) and the remaining terms by P n

P n .

(35) P 1×· · ·×P n×[ P (n−1)
P 2...n×P 3...n×···×P n×P (n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−1)×P n+ P n

P 2...n×P 2...(n−1)×···×P (n−1)×P n+

· · ·+ P n
P 2...n×P 3...n×...P (n−1)n×P (n−1)×P n ]

Simplifying, we reach:

(36) P 1×· · ·×P (n−2)×[ P (n−1)
P 2...n×P 3...n×···×P (n−1)n+ P n

P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+
P n

P 2...n×P 2...(n−1)×···×P (n−2)(n−1)+

· · ·+ P n
P 2...n×P 3...n×...P (n−1)n ]

Now we can simplify this in stages, first by summing the first and last of these
terms. Here, the key is that P (n−1)n is equal to P (n−1) + P n. When the first and last
term are summed, we can therefore eliminate the numerator and the term P (n − 1)n
from the denominator:

(37) P 1×· · ·×P (n−2)×[ 1
P 2...n×P 3...n×···×P (n−2)...n+ P n

P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+
P n

P 2...n×P 2...(n−1)×···×P (n−2)(n−1)+

· · ·+ P n
P 2...n×P 3...n×···×P (n−2)...n×P (n−2)(n−1) ]

Now we multiply the first term by P (n−2)(n−1)
P (n−2)(n−1) so that it has the same denumerator

as the last term:

(38) P 1×· · ·×P (n−2)×[ P (n−2)(n−1)
P 2...n×P 3...n×···×P (n−2)...n×P (n−2)(n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+

P n
P 2...n×P 2...(n−1)×···×P (n−2)(n−1) + · · ·+ P n

P 2...n×P 3...n×···×P (n−2)...n×P (n−2)(n−1) ]

Now we add the first and last term:

(39) P 1×· · ·×P (n−2)×[ P (n−2)(n−1)+P n
P 2...n×P 3...n×···×P (n−2)...n×P (n−2)(n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+

P n
P 2...n×P 2...(n−1)×···×P (n−2)(n−1) + · · ·+ P n

P 2...n×P (n−3)n×P (n−2)(n−1) ]
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Applying additivity, we know that P (n−2)(n−1)n = P (n−2)(n−1) + P n, so we can
simplify:

(40) P 1×· · ·×P (n−2)×[ 1
P 2...n×P 3...n×···×P (n−3)...n×P (n−2)(n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+

P n
P 2...n×P 2...(n−1)×···×P (n−2)(n−1) + · · ·+ P n

P 2...n×P (n−3)n×P (n−2)(n−1) ]

We continue this process of converting the first term to have the same denumer-
ator as the last term and adding the result. Throughout this process, the number
of terms continues to shrink from right to left until the only unmanipulated term is
C(〈n,1, . . . , (n− 1)〉):

(41) P 1×· · ·×P (n−2)×[ 1
P 2...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1) ]

Multiplying the first term by P 1(n−1)
P 1(n−1) , we reach:

(42) P 1×· · ·×P (n−2)×[ P 1(n−1)
P 1(n−1)×P 2...(n−1)×P 2...(n−1)×···×P (n−2)(n−1)+

P n
P 1...(n−1)×P 2...(n−1)×···×P (n−2)(n−1) ]

Adding we have:

(43) P 1× · · · × P (n− 2)× [ P 1(n−1)+P n
P 1(n−1)×P 2...(n−1)×P 2...(n−1)×···×P (n−2)(n−1) ]

Additivity implies that P 1(n− 1) + P n = 1. This gives us:

(44) C(〈1, . . . ,n〉) + C(〈n,1, . . . ,n − 1〉) + C(〈1,n, . . . ,n − 1〉) + · · · + C(〈1, . . . ,n,n − 1〉) =
P 1×···×P (n−2)

P (1...(n−1))×P (2...(n−1))×···×P ((n−2)(n−1)) = C¬n(〈1, . . . ,n− 1〉)

This completes the proof of Theorem 3.

Theorem 4. Suppose E is well-behaved. Then, for all descriptive A, E +HC A is well-
behaved.

Proof. Theorem 4 follows immediately from Theorem 3. Since the result of hypercon-
ditionalizing C on A, CA, is equivalent to CA, and since the latter is a well-behaved
credence distribution by construction, it immediately follows that hyperconditional-
izing on any sentence leads to a well-behaved information state.
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